Final Report on The Use of Fuzzy Set
Classification for Pattern Recognition

of the Polygraph
3%;%?; ~m | R. Benjamin Knapp, PhD
@y JAN 02 19954 1
- Ulka Agarwal

Ramin Djamschidi
Shahab Layeghi

Mitra Dastamalchi

[DETRUTON STATCHMENT B Eric Jacobs

Approved for purlic reicasel i 12-19-95
.. Dismdoutica Unlimited ;ﬁ

I
Accesion For ,
___________,________3}_——-]
NTIS CRA&I

DTIC TAB 0
Unannounced 0

| 208

Avail an_'i jor
Dist Special

Final Report on The Use of Fuzzy Set
Classification for Pattern Recognition of the
Polygraph

Table of Contents

1. INTRODUCTION 1
2. PHASE I: 1993-1994 2
2.1 DEVELOPMENT OF DATA PARSING ALGORITHMccccviiiieirieieeeaeeeeeeesrnnnseaeeesessessersesessasisssssssssssssssanarses 2
2.2 DESIGN OF FUZZY CLASSIFIER ALGORITHMcuvvvviiiiiieierurnreeeseessasnninrrereeeeeessseseessssssassissssssssssssssssrsnses 3
3. PHASE II: 1994-1995 4
3.1 COMPARISON OF THE Fuzzy C-MEANS, Fuzzy LMS, AND FUZZY K-NN ALGORITHMc.ccecvreevvenicns 4
3.2 Fuzzy C-MEANS ALGORITHM ON “RELEVANT ONLY” DATAcooiiiiiiiiiiiiieeeeerierieeeennrene e eiineeee s 6
4. SUMMARY OF RESULTS 6
4.1 AUTOMATIC DATA ANALYSISIMETHOD........cceiiiituriireeeeieeeinrttseeaeaesseennssesseeseseaeeseessssesaesessssasesssssmrnsnnss 6
4.1.1 Parsing the DAUAc.ccoouiiiiiiniiiiniiiiiic ettt 6
4.1.2 Classifing the DalQ..............cccovviciiiiiiininiiniininirie ettt s bt 7
4.2 CLASSIFICATION ACCURACYutvteeeeeteeeieiitreeeiisreeeiitreeasssasessssssasssssssasssnsentesasssssmneneesssssssesesessssonssesess 10
2.1 MGQOT ...ttt et 10
4.2.2 “Relevant ONlY”ccccoemmcciiiiiiiiiiisniccie ettt st 11
5. CONCLUSIONS 13
APPENDIX A: TIME DOMAIN FEATURES FOR THE FUZZY CLASSIFICATION OF
POLYGRAPH DATA A
APPENDIX B: FEATURE ANALYSIS OF THE POLYGRAPH B

APPENDIX C: PATTERN RECOGNITION OF THE POLYGRAPH USING FUZZY SET
THEORY C

APPENDIX D: USE OF FUZZY SET CLASSIFICATION FOR PATTERN RECOGNITION OF
THE POLYGRAPH D

APPENDIX E: ERRORS IN THE “RELEVANT ONLY” DATA E

Final Report on The Use of Fuzzy Set
Classification for Pattern Recognition of the
Polygraph
R. Benjamin Knapp, PhD

Ulka Agarwal, Ramin Djamschidi, Shahab Layeghi, Mitra Dastamalchi,
Eric Jacobs

1. Introduction

This is the final report of a two year study on the use of fuzzy pattern recognition of
polygraph data for the identification of truth versus deception. The goals of this study as
stated in the original proposal where to:

1. develop a data parsing algorithm which will process polygraph data obtained from the
NSA into three domains: time-domain, frequency domain, and correlation domain;

2. design a fuzzy classifier algorithm to accept the featurized data and modify its
membership functions based on the error between its classification of the polygraph
data and the classification in the NSA files;

3. study relationship between number of membership functions an the success of the data
classification and,

4. investigate the feasibility of the classification being performed in a near-real-time
scenario.

The data to be used was MGQT polygraph data. However, the proposal for the second
year of the study introduced the goal of comparing the performance of the developed
fuzzy classification system with “zone comparison” polygraph data. Ultimately this was
changed to be the simulated “relevant only” data obtained from DODPL

There were two secondary objectives of this project. First, are the features identified as
optimal in determining the veracity of a subject optimal for all subjects. Second, are there
features not presently being used in polygraph analysis the may be optimal.

This report and its attached appendices will show that all objectives of the original
proposal where met. A fuzzy parser and classifier system were developed that could run
in near real-time, achieve performances as good or better than the presently available
automatic polygraph systems, and identify new features that previously where not used in
polygraph classification. Results of 97% correct for the MGQT data and 100% correct
for the “relevant only” data were achieved. It will be shown that while certain features
yield good identification across all subjects, a clustering algorithm, fuzzy C-means,
developed in the second phase of this work identified many sets of features that probably
should be tried to achieve optimal performance.

Fuzzy Pattern Recognition of PolyGraph 1 12/19/95

2. Phase I: 1993-1994

The first phase of this project developed a complete automatic data parsing system and
fuzzy pattern recognition system based on the fuzzy k nearest neighbor algorithm. These
two elements are summarized below.

2.1 Development of Data Parsing Algorithm

The initial goal of this phase was to be able to read the MGQT data files received from the
NSA and separate this data into appropriate features for classification. After consulting
with the University of Washington, we were able to develop our own data reading
program.

After consultation with experienced polygraph examiners and a detailed review of the
polygraph literature, the data reading program was then modified to parse the data into a
matrix of features. The feature set included, as outlined in the project proposal, time
domain, frequency domain, and correlation domain data. Some examples of the feature set
are:

Time Domain Features

- Mean, curvelength, area, and standard deviation for all polygraph channels

- Average of the amplitudes of the peaks in the cardio and respiratory channels
- Derivative of the amplitudes of the peaks of cardio and respiratory channels
- Number of peaks in the cardio and respiratory channels

- Inhalation amplitude/exhalation amplitude of respiratory channels

Frequency Domain Features

-Fundamental frequency of cardio and respiratory signals

-Coherency and cross power spectral density between cardio and respiratory channels
-Power spectral density of cardio and respiratory channels

-Integrated power spectral density for cardio channel

Correlation Domain Features

- Autoregressive parameters (10) for cardio signal
- Cross-correlation between cardio and respiratory channels

In order to classify subjects using the difference between control and relevant responses,
and to minimize the size of the feature vector, the features were combined according to
the following method: for each feature i (except for the three features corresponding to
the cross power spectral density and integrated spectral difference) from each subject j
compute:

Fuzzy Pattern Recognition of PolyGraph 2 12/19/95

1. The average control responses AvgCont,,

2. The average relevant responses AvgRel;

3. The maximum and minimum control responses MaxCont;MinCont,
4. The maximum and minimum relevant responses MaxRe [, MinRel;

The feature vector components for feature 7 are then:

1. AvgRel, — AvgCont,

AvgRel, - AvgCont,
AvgRel, + AvgCont,

3. MaxRel, - MaxCont

i

4, MinRe l,f - MinC ont,
5. MaxRe l,.j. - MinCont,.j
6. MinRe Iij - MaxCont,.j

MaxRel,

MaxCont,

For the three features mentioned previously that cannot be combined as above then from
each subject j compute:

1. The average of relevant-control responses Avg(Re/Cont);
2. The maximum of relevant-control responses Max(Re ICont),
3. The minimum of relevant-control responses Min(Re lCont),

For a complete description of this method, see the report in Appendix B entitled Feature
Analysis of the Polygraph by Mitra Dastmalchi.

Ultimately 669 features were automatically extracted from the data. The complete list of
all 669 features used in this project are shown in Table 1 in the report in Appendix D
entitled Pattern Recognition of the Polygraph Using Fuzzy Set Theory. The use of this
automatic data parsing algorithm is described in more detail in section 4.1.

2.2 Design of Fuzzy Classifier Algorithm

Fuzzy classifier design first focused on the development of a fuzzy set based k nearest
neighbor algorithm. (This work is described in detail in Appendix C entitled Pattern
Recognition of the Polygraph Using Fuzzy Set Theory and in Pattern Recognition of the
Polygraph Using Fuzzy Classification, Proceedings of the 1994 IEEE International
Conference on Fuzzy systems, Vol III, pages 1825-1829.) This algorithm is a supervised
learning algorithm which means that training data is presented to the algorithm and then

Fuzzy Pattern Recognition of PolyGraph 3 12/19/95

the algorithm is “frozen” and test data is presented. Training on this and all other
algorithms in both phases of the study was always performed on 3/4 of the data with
testing performed on the remaining 1/4 of the data. The algorithm learned using a set
of MGQT data divided equally between truthful and deceptive. Since there were 150
deceptive files and only 50 truthful files, the deceptive files were divided into three sets of
50 files each. When a question was asked more than once by an examiner the questions
were scored individually and then combined at the end on a majority basis. The results of
this work are summarized collectively in section 4.2 below.

3. Phase 1l: 1994-1995

The second phase of this project dealt with creating an unsupervised clustering algorithm
which could identify important features more rapidly, creating another supervised learning
algorithm to determine if the fuzzy k-NN algorithm was optimal (fuzzy-LMS), creating a
genetic search algorithm to try to aid in the search for optimal features, and expanding the
algorithm testing to look at simulated “relevant-only” data from DODPI in addition to the
MGQT data. These elements are summarized in the two sections below

3.1 Comparison of the Fuzzy C-means, Fuzzy LMS, and Fuzzy k-
NN Algorithm

An unsupervised clustering algorithm was created to visualize which features allow for
larger separation in the truthful and deceptive data clusters. In addition, a supervised
learning algorithm, fuzzy LMS, was created to compare with fuzzy C-means and fuzzy k-
NN. (This work is described in much more detail in, and partially excerpted from,
Appendix D, Use of Fuzzy Set Classification for Pattern Recognition of the Polygraph,
and in Classification of Deception Using Fuzzy Pattern Recognition, Psychophysiology,
Volume 31, Supp.1, August 1994.)

The fuzzy LMS system is unique in its application of linguistic knowledge. The use of
linguistic knowledge ensures the robustness of the fuzzy system. The use of linguistic
information also ameliorates the problem of not having enough reliable numerical data.
Unlike classification schemes such as the K-Nearest Neighbor, the fuzzy LMS algorithm is
not entirely dependent on numerical data.

When applied to pattern recognition, fuzzy logic systems can be set up to perform like
KNN systems. In KNN systems, numerical data of known class patterns are set up to
estimate the probability density distribution of the classes. The probabilities of new data
points belonging to the different classes are then computed based on such distribution.
Data points around known class samples are then classified into the same class with a
higher probability. The fuzzy-KNN algorithm modifies the classical KNN algorithm by
taking into account the distance between the data point and the known class patterns when
estimating the probability. Conceptually this is similar to setting up clusters around all
known class samples and calculating the degree of belonging of new data points in the
different types of clusters. Other than the exact mathematical equations, that description

Fuzzy Pattern Recognition of PolyGraph 4 12/19/95

fits a fuzzy adaptive system where each rule corresponds to a known class pattern and the
size of the clusters is the same for all rules.

However, fuzzy adaptive systems give up some of the nice theoretical understandings of
the KNN systems but gain some practical advantages. The number of rules required are
usually much smaller than the number of known samples. Fuzzy logic can usually exploit
that to reduce system complexity.

Furthermore, the system complexity for a fuzzy adaptive system stays the same even as
new information are available. This is partly a result of the way this algorithm adapt
continuously; new information are learned as old ones are forgotten. The fuzzy LMS
learning technique is like backpropagation, a popular neural network training technique.
However, the fuzzy LMS learning algorithm requires few epochs for training. In all our
trials the maximum recognition rates for testing data peaked in less than thirty epochs.
About 95% of them peaked in less than twenty epochs]. This is a few orders of magnitude
less than most applications of backpropagation. In many cases the peaks occurred before
any training; that is, the system uses only linguistic rules. Here the use of expert
knowledge speeds up the training of the system.

The fuzzy-c-means algorithm, unlike fuzzy LMS, is an unsupervised clustering algorithm.
Given a set of data, FCM looks for a (usually) predetermined number of clusters within
the data points. It does not use any knowledge about the correct, or desired classification
of any of the elements. The algorithm only minimizes an objective function, which is the
sum of a function of the data points' membership values and the distances between the
data points and the clusters' centers.

FCM operates like a black box; given some data, the algorithm automatically computes
the results2. This presents the advantage that different sets of data using different features
can be tested in a routine manner. FCM also presents a way to normalize the different
dimensions of the data, just like the use of sigma in the fuzzy LMS algorithm. However,
unlike fuzzy LMS, FCM does not present a method to find the optimal way for such
normalization.

The fuzzy LMS algorithm, however, does pose some potential problems of its own. The
use of expert knowledge, while a benefit in some senses, may not be always
straightforward. For example, in our project we did not have any specific knowledge
about the polygraphy itself. Whatever we learned, we learned by looking at numerical
data. As we tried to find more complicated patterns, patterns involving three, four, or
more features, the analysis became more difficult. Naturally one wishes to automate this
process. If we do not rely on some learning procedures, however, rules cannot be
automatically found for the fuzzy system. Much research also needs to be done to
understand the fuzzy LMS algorithm's learning dynamics. While the same method,
gradient descent, is used on both backpropagation and the fuzzy LMS algorithm, the
general shapes of the error surface between the two are different. In backpropagation, all

'However, we ran every tria! to forty epochs to ensure that there is no "false” peak.

2Qur job is basically to adjust the parameters.

Fuzzy Pattern Recognition of PolyGraph 5 12/19/95

the parameters have the same range and lie in an uniform neural network structure. In the
fuzzy LMS algorithm, the parameters can have different ranges and lie a fuzzy logic
structure that is not completely uniform. The effects of such differences on the shape of
the error surface and the learning dynamic are unknown.

A summary of the data comparing these methods is presented in section 4.2 below. All
MGQT data was processed as was summarized in section 2.2 above.

3.2 Fuzzy C-means Algorithm on “Relevant Only” Data

The data parsing algorithm was extensively modified to process the relevant only data.
This data was composed of 166 truthful and 166 deceptive tests with no irrelevant
questions asked. Thus the seven techniques of data combination described in section 2.1
could not be used. Instead, four combinations were used as follows:

1. Avg(Feature)
2. Max(Feature)-Min(Feature)
3. Max(Feature) / Min(Feature)
4. Std(Feature)

Also, these files were in an entirely different data format which head to be interpreted for
data parsing. (See Appendix E for a summary of incorrect data formats from the “relevant
only” data.)

4. Summary of Results

The results for the entire project are summarized below. First, the complete automatic
data analysis package is summarized including data parsing and classification. Second,
comparison of accuracies amongst the different methods for both MGQT and “relevant
only” polygraph data is presented.

4.1 Automatic Data Analysis Method

Below is a description of the automatic data parsing and classification technique
developed in this project. Refer to Appendices A-D for a more complete description.

4.1.1 Parsing the Data

4.1.1.1 Reading the Data

It should be noted that the data reading methods are only important for “off-line”
processing and would not be used for near real-time applications.

The data was collected in three phases labeled ERS-1, ERS-2 and ERS-3. Each polygraph
test may consist of one to five charts with each chart consisting of three files. Each chart is
a series of questions, usually ten questions. The files are given in DOS file format and
must be read and decoded before they can be seen.

Fuzzy Pattern Recognition of PolyGraph 6 12/19/95

The following files comprise a chart:
$SEACOWO0.011
SSEACOWO.021
$SSEACOWO0.031

Each of these three files has a specific significance. The .XX3 files are text files which
contain the questions which the subjects were asked. The . XX1 and .XX2 files are
encoded in a specific format created by Axciton polygraph testing devices. These files can
be decoded by a program entitled read3. Read3 can be invoked in DOS as in the following
example:

read3 $SEACOWO.011 outputl
read3 3SEACOWO.021 output2
read3 $SEACOWO.031 output3

The read3 command decodes the data in files X.011, X.021 and X.031 and writes them in
ASCII files entitled output1, output2 and output 3, respectively. Output2 and output3
contain the actual signals from four polygraph channels with a timing signal which shows
the times when the questions were asked. The output files were labeled such that minimal
confusion was allowed. For example, the output file for non-deceptive subject 45, text file
.XX3 compiled during phase ERS-1 reads:

nd45t3.exl

4.1.1.2 Feature Extraction

After the polygraph files are decoded and written into output files, they can be processed
in MATLAB. MATLAB is a commercially available mathematical analysis program which
runs on a PC, Macintosh, and most UNIX platforms. The feature extraction process
consists of a MATLAB program which extracts features for all files and saves them in a
matrix consisting of subjects and features. The main feature extraction program is a
MATLARB routine called Do.M. This program extracts the pre-selected 52 features, from
each subject, contained in the variable feature_list. Feature_list is a MATLAB matrix
which includes the names of the feature extraction routines. In each row of the feature_list
matrix, a feature extraction routine is named along with the channel number(s) this routine
will be applied to. The mean, standard deviation, maximum subtracted from the minimum
and the maximum divided by the minimum is taken of the extracted features. These four
results are put into a matrix which is then put into a larger matrix called x10.mat,
consisting of all non-deceptive and deceptive subjects and all 52 features from the feature
list.

4.1.2 Classifying the Data

After the data is parsed in DOS and MATLAB, the classifying process takes place entirely
in MATLAB.

Fuzzy Pattern Recognition of PolyGraph 7 12/19/95

4.1.2.1 K-Nearest Neighbor Algorithm

The main program which runs the KNN algorithm is called fknn which is written in the C
programming language. This file interacts with MATLAB by reading and writing files in
MATLAB format, that is .mat files. This algorithm is implemented by the program fknn
which opens a MATLAB data file, reads the training matrix, classifies each entry in the
testing matrix and writes the result in an output file. The file from which this program
receives information from is “fdatafile. mat” which is in MATLAB file format.

Because the KNN algorithm has been automated, it can be run in only a few simple steps.
For a complete description of this process see Appendix C. Before running the algorithm a
few variables must be determined. For example, for the “relevant only” data:

1. A single variable ‘C’, the number of classes was set equal to two for deceptive and
non-deceptive.

2. A single variable ‘K’, determines how many different points surrounding a chosen
point will be compared to it and classified. The parameter ‘K’ in the K-NN algorithm
was varied from one to ten throughout the simulations.

3. A single variable ‘M, the coefficient in the fuzzy algorithm was set equal to two.

4. A training matrix ‘P’, contains a set of feature vectors. Each vector is a column of the
matrix. There were fifty deceptive and fifty non-deceptive tests used for training. The
combination of features to be tested is also entered in this matrix.

5. A class membership matrix ‘T’, which contains the membership values of the training
set vectors to the classes. This matrix was set such that a one was displayed for a non-
deceptive detection and a zero for a deceptive detection.

6. An input matrix ‘U’, which contains a set of unclassified feature vectors contained the
rest of the tests not used for training. These remaining tests make up the testing
matrix. The same combination of features entered in ‘P’ are to be entered in the ‘U’
matrix.

7. Threshold which is varied from 0.2 to 0.8 throughout the simulations.

Once the matrix X10.mat is loaded in MATLAB, the KNN algorithm can be invoked by
simply typing “KNN”. The user will then be asked to enter a numerical value for the K
parameter in the K-NN algorithm. Parameters chosen between one and ten have been
found to produce the best results. Once the k parameter has been entered, the number of
correct deceptive and non-deceptive detections can be obtained by entering the following:

sum(fresult(1,1:116)>0.5) non-deceptive
sum(fresult(1,117:232)<0.5) deceptive

The correct detection for non-deceptive data is shown by a one, so the threshold is greater
than 0.5. The percent correct for the deceptive data can be obtained by dividing the
number of correct deceptive detections by 166. This same process works for the non-
deceptive data. Finally, the total correct detection percent is obtained by taking the
average of the two percentages.

Fuzzy Pattern Recognition of PolyGraph 8 12/19/95

4.1.2.2 Fuzzy C-Means

The Fuzzy C-Means algorithm for MGQT data has been made user friendly through
automated push buttons written in MATLAB (see Figure 1). These buttons allow the user
to execute the feature extraction and classification process without an understanding of
the complexity of each program used in the algorithm. With minor modifications, the push

buttons can be used for the “relevant only” data as well.

ONE-DIMENSIONAL . MULT-DIMENSIONAL

QCLTIEAEEEs ’\\““\.\.\\\ - i B .
8 v S : Had
TRRNRERE 3 i AR Fa el

e

N]

25555
3

AT R
S AR RN
‘Q\\\\\\\vﬁs\\\\ N A T A TN AR

7
)

: ““SSSSE&EE:EEE i\“*-“-‘-&&”
ki:\“\w\.“u.w.“% \\s\‘\.‘\\\\\\\\\\M.\\\.s\\\\\ A IRRRAY
'-:tt"t&\‘.tttt\t‘-:tttttttttt‘ctt‘cm&i:mtm\

o

R SToR
kk’\'}.&“s.\w.ttttaﬂ&“ R

mmmmx&»»ﬁo»»w%v»

27

TR

S

PR - e, o
RS AR S TSR : X % SHHRREE
N ARE 5 i mmm»\\w \z“‘-‘-v-&km:;-:‘-“

SRS

Figure 1: User Interface for Fuzzy C-Means Clustering Algorithm

Before running the algorithm a few variables must be determined. For example, for the
‘relevant only” data:
1. The ‘temp’ matrix in the fc_means program was set equal to the dimensions (1,332).

2. The threshold was varied from 0.2 to 0.8 for each different simulation that was run.
3. Combination of features to be tested can be changed as described below.

The following execution process is necessary only if the push button automation is not
used. After the matrix X10.mat is loaded, the user must type the following to run the

algorithm:
[Uik,z] = fc_means(5,0.000005,x10([8 23 24],:))

The z parameter is the number of iterations made by the algorithm to obtain the results

and Uik is the membership values. To calculate the correct detection of non-deceptive and

deceptive subjects, the user must type the following:

Fuzzy Pattern Recognition of PolyGraph 9

12/19/95

sum(Uik(1,1:166)<0.5) non-deceptive
sum(Uik(1,117:332)>0.5) deceptive

where 0.5 is the selected threshold for this particular simulation. The percent correct for
each class can be determined by dividing the number correct by the total number. The total
percent correct is then obtained by averaging the two percentages.

4.1.2.3 Least Mean Squares Algorithm

The LMS fuzzy adaptive filter is a nonlinear adaptive filter which makes use of both
linguistic and numerical information concerning the physical characteristics of the
polygraph data in their natural form. This filter is constructed from a set of changeable
fuzzy IF-THEN rules. We have the choice of setting the rules according to our
experiences and incorporating them directly into the filter, or initializing the rules
arbitrarily. Before running the algorithm a few variables must be determined. For example,
for the “relevant only” data:

1. The number of training subjects was set equal to 100.
2. The ‘running time’, how often the algorithm goes through the data, was set to 70.

3. Different combinations of the features was changed manually for each different
simulation.

After the matrix X10.mat is loaded, the user must simply type:
Imstest.m

The total percent correct of deceptive and non-deceptive data is automatically displayed
under the variable ‘maximum’.

4.2 Classification Accuracy

4.2.1 MGQT

Figure 2 shows a comparison of the best results for each of the classification algorithms
found in this study. (See Appendix D for a more complete description of how this
comparison was performed.) It should be noted that the optimum features found for the
fuzzy c-means and the fuzzy k-NN algorithms were different. This is important because it
means that if both algorithms were run on a given subject, there results could be
independent and corroboratory. The fuzzy LMS algorithm was simply run using the
optimal four features found for the fuzzy c-means algorithm. The method number refers to
the 7 combination methods described in section 2.1 above. The three data files refer to the
fact that the 150 deceptive files were separated into three files of 50 and compared to the
50 non-deceptive files.

Fuzzy Pattern Recognition of PolyGraph 10 12/19/95

Features Used

Data Set 1

Data Set 2

Data Set 3

Fuzzy C-Means

Ampl of Peaks(High Freq
Cardio) Meth. 4,

Max-Min(High Freq Cardio)
Meth. 7,

Std(GSR) Meth. 2,
Std(GSR) Meth. 4

93

87

97

Fuzzy k-NN

Max(GSR) Meth. 1,
Max(Lower Resp) Meth. 6,
Max(Upper Resp) Meth. 3,

Max-Min(High Freq Cardio)
Meth. 4

86

80

91

LMS Fuzzy

Ampl of Peaks(High Freq
Cardio) Meth. 4,

Max-Min(High Freq Cardio)
Meth. 7,

Std(GSR) Meth. 2,
Std(GSR) Meth. 4

81

83

83

Figure 2: Comparison of Different Classification Techniques of MGQT Data (in percent

correct)

4.2.2 “Relevant Only”

For the relevant only data the fuzzy c-means algorithm was used since it achieved the best
performance for the MGQT data. Figure 3 shows the summary of results for different
combinations of the four optimal features described in Figure 2 above.

Fuzzy Pattern Recognition of PolyGraph 11

12/19/95

Feature(s) 0.2 0.3 04 0.5 0.6 0.7 0.8

[2 4] N: 85 N: 81 N: 64 N: 43 N: 33 N: 20 N: 34

[2 34] N: 100 N: 86 N: 78 N: 51 N: 11 N: 0.6 N:3

D: 0 D:2 D: 28 D: 58 D: 92 D; 99 D: 97
[2 39] N: 100 N: 97 N: 83 N: 56 N: 9 N: 3 N: 4

D:2 D:5 D: 29 D: 55 D: 92 D. 97 D: 91
[4 34] N: 85 N: 52 N: 28 N: 20 N: 11 N: 5 N: 6

D: 12 D: 41 D: 63 D: 78 D: 84 D: 84 D: 96

[4 39] N: 84 N: 61 N: 33 N: 21 N: 13 N: 5 N: 4
D: 10 D: 37 D: 65 D: 72 D: 83 D: 93 D: 92

[34 39] N: 100 N: 97 N: 90 N: 78 N: 64 N: 36 N: 45
D: 0.6 D:3 D: 16 D: 26 D: 40 D: 64 D: 68

[2 4 34] N: 100 N: 86 N: 78 N: 49 N: 11 N: 0.6 N: 3

[2 4 39] N: 48 N: 45 N: 36 N: 30 N: 29 N: 24 N: 34
D: 24 D: 30 D: 32 D: 36 D: 45 D: 48 D: 54

[23439] |N:48 N: 0 N: 5 N: 33 N: 77 N: 99 N: 100
D: 24 D:1 D:5 D: 32 D: 71 D: 99 D: 100

[4 34 39] {N:48 N: 45 N: 34 N:3 N: 22 N: 23 N: 4
D: 24 D: 30 D: 6 D: 65 D: 54 D:5 D: 66

[2 4 34 39]|N: 100 N: 99 N: 95 N: 67 N: 23 N: 1 N: 54
D: 0 D:0 D:5 D: 33 D: 71 D: 99 D: 33

Figure 3: Classification of "Relevant Only" Data Using the Fuzzy C-Means Algorithm
and Different Combinations of the Four Features Given in Figure 2

Fuzzy Pattern Recognition of PolyGraph 12 12/19/95

Note that for the combination of three features, 2, 34, 39 (which correspond to Std(GSR)
Meth. 2, Ampl of Peaks(High Freq Cardio) Meth. 4, Max-Min(High Freq Cardio) Meth.
7) a score of 100% correct for both deceptive and non-deceptive was achieved.

5. Conclusions

This project achieved all goals set in the phase 1 and phase 2 proposals:

1.

a data parsing algorithm was developed which will process polygraph data obtained
from the NSA into three domains: time-domain, frequency domain, and correlation
domain;

several fuzzy classifier algorithms were designed to accept the featurized data and
modify its membership functions based on the error between its classification of the
polygraph data and the classification in the NSA files;

relationships were found between number of membership functions an the success of
the data classification up to four simultaneous features;

the feasibility of the classification being performed in a near-real-time scenario was
shown; and

near perfect scores were achieved for both MGQT and “relevant only” data without
allowing for any “don’t know” results.

Fuzzy Pattern Recognition of PolyGraph 13 12/19/95

Appendix A: Time Domain Features for the Fuzzy
Classification of PolyGraph Data

Eric Jacobs

Fall, 1993

Fuzzy Pattern Recognition of PolyGraph A 12/19/95

Time Domain Features For The Fuzzy Set Classification
Of Polygraph Data

EE 297
Dr. Benjamin Knapp
Electrical Engineering Department
San Jose State University

Eric Jacobs
November 1993

Abstract

A polygraph examination is the most popular method used to determine if an
individual is being truthful or deceptive. During an examination, a subject is asked a series
of questions and the physiological responses to the questions are recorded using a
polygraph. The three physical responses currently obtained from a polygraph
examinations are blood pressure, respiration, and skin conductivity. Polygraph charts are
usually analyzed by a human interpreter for evidence of truth or deception; however,
computer algorithms are now being used to verify results [1]{2].

In this project, the K nearest neighbor algorithm was used to determine truth or
deception. By using this adaptive fuzzy system, it was possible for the computer
evaluation of the polygraph to adapt to individua! differences in the physiological
responses. Two algorithms were necessary for this project. The first was a parsing
algorithm which preprocessed polygraph data and extracted features from it. These
features can be separated into three domains: time domain, frequency domain, and
correlation domain. The second was the K nearest neighbor fuzzy classifier which
analyzed the data from the parsing algorithm and determined the possibility of deception.

o ‘“

Contents

1.1 History

1.2 Modern Test Formats

1.3 Present Day Equipment

2.1 Fuzzy Set Theory

3.1 MGQT

4.1 File Formats

5.1 Preprocessing

5.2 Time Domain Feature Extraction
5.3 Feature Extraction Methods
6.1 Conclusion

References

Appendices

10

15

17

17

18

20

1.1 History

The first attempt to use a scientific instrument in an effort to detect deception
occurred around 1895 [3]. That was the year that Cesar Lombroso published the results
of his experiments in which a hydrosphygmograph was used to measure the blood
pressure-pulse changes of criminals in order to determine whether or not they were
deceptive. Although the hydrosphygmograph was originally intended to be used for
medical purposes, Lombroso found that it worked well for lie detection. Lombroso may
have been the first to use a peak of tension test format. This was done by showing a
suspect a series of photographs of children, one being the victim of sexual assault. If the
suspect did not react more to the victims picture than the pictures of the other children,
Lombroso concluded that the suspect did not know what the victim looked like and
therefore was not the alleged perpetrator.

In 1914 Vittorio Benussi published his research on predicting deception by
measuring recorded respiration tracings [4]. He found that if the length of inspiration
were divide by the length of expiration, the ratio would be larger after lying than before
lying and also before telling the truth than after telling the truth. In 1921 John A. Larson
constructed an instrument capable of simultaneously recording blood pressure pulse and
respiration during an examination [3][4]. Larson reported accurate results which
prompted Leonarde Keeler to construct a better version of this instrument in 1926 [3][4].

The use of galvanic skin response in lie detection began during the turn of the
century. It's usefulness, however, did not become evident until the 1930's during which
time several articles written by Father Walter G. Summers of Fordham University in New
York [4]. In these articles he reports over 90 criminal cases in which examination using
the galvanic skin response had all been successful and confirmed by confession or
supplementary evidence. The usefulness of the galvanic skin response prompted Keeler
to add an galvanometer to his polygraph. At the time of Keelers death in 1949, the Keeler
Polygraph recorded blood pressure-pulse, respiration, and galvanic skin response [3].

1.2 Modern Test Formats

The effectiveness of a polygraph examination is often the result of the test format
that is used. A polygraph test format consists of an ordered combination of relevant
questions about an issue, control questions that provide a physical response for
comparison, and irrelevant questions that also provide a response or the lack of a response
for comparison [1][4]. Three general types of test formats are in use today. These are
Control Question Tests, Relevant-Irrelevant Tests, and Concealed Knowledge Tests.
Each of the general test formats may have a number of more specific variations. Each test
consists of two to five charts containing a prescribed series of questions. The test format
that is used in an examination is determined by the test objective [3][4].

The concealed knowledge test, also called peak of tension test, is used when facts
about a crime are known only by the investigators and not by the public. In this case, a
subject would not know the facts unless he or she was guilty of the crime. For example,
if a gun was used in a crime and the public did not know the caliber, an examiner could
ask a suspect if it was a 22 caliber, a 38 caliber, or a2 9mm. If the gun used was a2 9mm

and the suspect was deceptive, a polygraph chart would probably indicate evidence of
deception. _
A control question test is often used in criminal investigations. In this type of test
a series of relevant, irrelevant, and control questions are asked. A relevant question is one
which is specific to the crime being investigated. For example, " Did you molest the
child?". A control question is designed to make the subject feel uncomfortable. It is not
specific to the crime being investigated however it may be related in an indirect way. A
control question that could follow the relevant question stated above is "Have you ever
forced yourself on another person sexually ?". The contro! questions are compared to the
relevant questions and if the responses to the relevant questions are greater, the subject is
usually classified as deceptive. Irrelevant questions are used as buffers. Examples of
irrelevant questions are "Are the lights in this room on?" or "Is today Monday?".
Relevant-Irrelevant tests are usually used to test people trying to obtain security
clearance or get a job. In this test, relevant questions are compared to irrelevant
questions. Very few control questions are asked. The purpose of control questions in this
test is to make sure that the subject is capable of reacting at all.

1.3 Present Day Equipment

The most popular polygraph machines today are the Reid Polygraph developed in
1945 and the Axciton Systems computerized polygraph developed in 1989 [1][11]. The
Reid polygraph scrolls a piece of paper under pens that record the biological signals. The
Axciton polygraph digitizes physiological signals and uses a computer to process them.
The sampling frequency of the Axciton machine is 30 Hz. Axciton provides a computer
based system for ranking the subject responses but allows printouts of the charts to be
scored by hand the traditional way. The Axciton and Reid polygraphs are shown in
figures 1 and 2 respectively.

Both machines record the same biological signals using standard methods. Blood
pressure is measured by placing a standard blood pressure cuff on the arm over the
brachial artery. Respiration is monitored by placing rubber tubes around the abdominal
area and the chest of the subject. This results in two signals, an upper and lower
respiratory signal. Skin conductivity is measured by placing electrodes on two fingers of
the same hand.

Figure 1 Axciton Polygraph [1]

Figure 2 Reid Polygraph [3]

2.1 Fuzzy Set Theory

In 1965 fuzzy sets were introduced by Lofti Zadeh [5][6]. They provided a new
way to represent vagueness and made description of many situations much easier. For
example, it is not practical to say that all temperatures below 72 degrees Farenheit are
cold and all temperatures above are hot. Instead, temperatures between 50 and 72 would
by described as cool, temperatures between 30 and 50 would be considered cold, and
anything below 30 would be very cold. One way to describe this situation is through the
use of fuzzy set theory. In fuzzy set theory an element is not defined as belonging or not
belonging to a given set. Instead, it has a degree of membership in a set which is
characterized by a compatibility function uA [6] [7]. The compatibility function, also
called a membership function, states the degree of membership in a set "A" and has a
range [0,1]. An illustration of how this applies to the temperature example above is
illustrated in figure 1 and described below.

A

5 ucold(T) uhot(T)

30 72 100
Figure 3 Compatibility functions ucold(T) and uhot(T) vs. temperature.

Here, u,,,(T) and u, (T are the degrees of membership in each set and T is the
temperature in Farenheit. Figure 1 shows that the temperatures around 72 degrees have
membership in u_,(7T) and u,,,(T). These memberships have values around .5 which
represents cool or warm. As the cooler temperatures decrease, u,,, (T) increases thus
representing a colder situation. Once the temperatures become less than 30 degrees,
u_,,(T) obtains a membership value of 1 which indicates very cold temperatures.

Fuzzy set theory is often thought of as another form of probability theory. In
actuality, the two are very different [8]. In Bayesian probability theory, elements either
belong or do not belong to a given set, and a probability density function determines the
likelihood. For example, a light may be either on or off and the probability of either event
occurring will depend on some statistical parameters (Is the room occupied? Is it dark
out? etc.). The following is an example of the difference between fuzzy logic and
Bayesian probability theory [6].

Example 1

Let L = set of all liquids, and let fuzzy subset 1 = {all (potable) liquids}.
Suppose you had been in the desert for a week without drink and you came upon two
bottles marked "C" and "A" as in figure 4a.

f T —

‘.‘ai .

\Y

mL(C)sO.ﬂ Pr(de L)= 09

Figure 4a Liquids before observation

Confronted with this pair of bottles, and given that you must drink from the one
that you choose, which would you choose to drink from? Most readers, when presented
with this experiment, immediately see that while "C" could contain, say, swamp water, it
would not (discounting the possibility of a Machiavellian fuzzy modeler) contain liquids
such as hydrochloric acid. That is, membership of 0.91 means that the contents of "C" are
fairly similar to perfectly potable liquids (e.g., pure water). On the other hand, the
probability that " A" is potable = 0.91 means that over a long run of experiments, the
contents of A are expected to be potable in about 91% of the trials; in the other 9% the
contents will be deadly - about 1 chance in 10. Thus, most subjects will opt for a chance
to drink swamp water.

There is another facet to this example, and it concerns the idea of observationion.
Continuing then, suppose that we examine the contents of "C" and "A" and discover them
to be as shown in figure 4b. Note that, after observation, the membership value for "C" is

. unchanged while the probability value for A drops from 0.91 to 0.0.

rn‘_(C) = 0.91 : Pr(Ae L) =0

Figure 4b Liquids after observation

This example shows that these two models possess philosophically different kinds
of information: fuzzy memberships, which represent similarities of objects to imprecisely
defined properties; and probabilities, which convey information about relative frequencies.

3.1 MGQT

The test format used in this project was the MGQT test format. It is a type of
control question test in which relevant, irrelevant, and control questions are asked in the
order given in table 1 [9][12]). Before each test, the questions that will be asked are
discussed with the subject. The series of questions is asked three times in the order
specified in table 1. This produces three test charts. The examiner waits about 20
seconds between each question.

Not all of the Axciton charts used in this study follow the format of table 1 exactly.
Many examiners rearranged the order in which the questions were asked. All polygraph
charts used, however, were variations of this test. For example, one examiner used a test
format in which questions 3 and 4 were switched. Many of the examiners changed the
order in which the questions were asked in the second and third charts.

Question Type of Question

irrelevant
irrelevant
relevant
irrelevant
relevant
control
irrelevant
relevant
relevant
0 control

- \0 00 ~J O\ h i W

Table 1 MGQT question format

4.1 File Formats

Axciton files, digitized polygraph data from the axciton polygraph, were obtained
from the National Security Agency (NSA) in standard MSDQS format. The sampling
frequency of the data was 30Hz. Each test consisted of nine files. The labling of the files
is shown in table 2 and the purpose of each file is explained below.

Chart 1 Chart 2 Chart 3

$$x000xx.011 $$x0000xx.021 $$x000xxx.031

$$x0000xx.012 $$x00xx.022 $$x0000xx.032

$S0000x.013 $$x000xx.023 $$x00000x.033
Table 2 File format

As stated in the section above, each examination is composed of three charts. The
chart number is specified by the second number after the period. The third number after
the period represents the type of file.

$$300000x.0x1 is the event marker file which contains the length of the chart and
the event markers. The start and end of an examiners question is marked witha 0 and 1,
respectively. The beginning of the subjects response is indicated with a 2 and the rest of
the file is marked with 9's. File $$x0000cx.0x2 is the file containing the biological signals.
These signals correspond to the marker file. File $$x0000x.0x3 contains the questions and
labels them relevant, irrelevant, or control.

An ASCII file of five columns is created by using $$xx00x.0x1 and $$x00000x.0x2
and a program provided by the NSA. An example of this file along with a description of
the function of each file is shown in table 3 [12].

Event Marker FileChart Data FileQuestion TextFile

S, 0x1 $Hro00omx.0x2 $80000x.0x3

Axciton Contains the length of Contains the digitized ~ Contains the script of
File the chart, the number series values formatted of questions or a
of channels, and the according to flags in the shorthand script of
position of the event Event Marker File. questions.
marker.
Processing Becomes the 5th Becomes 1st-4th columns Files used to
Notes column of ASCII file. of ASCII file. determine deviations
0O=start of a question Column 1-GSR from standard test
1=end of a question Column 2-Cardio format.
2=start of response Column 3-Upper Resp
9=No Event Marker Column 4-Lower Resp
ASCH File Format (with column labels)
File Row GSR Cardio UR LR EvMark
DOS 1 1983 1931 1482 1083 9
File 2 1983 1922 1483 1084 9
3 1983 1913 1483 1084 9
4 1983 1906 1483 1085 9

Table 3 File description and example

!
|

5.1 Preprocessing

MATLAB was used to display the signals and implement all of the filters and
feature extraction algorithms. First, the four biological signals were processed into six
channels. Hamming windowed FIR filters were used to create these channels and
eliminate noise. A low frequency cardiovascular channel was produced by lowpass
filtering the cardiovascular signal at .5 Hz using a 134 tap lowpass filter. Then, a high
frequency cardiovascular channel was produced by highpass filtering the cardiovascular
signal at .5 Hz using a 134 tap highpass filter. The derivative of the low frequency
channel was then used to create a third channel. To eliminate noise, the upper and lower
respiratory signals were lowpass filtered at 1.2 Hz using a 160 tap filter. Noise was
eliminated from the galvanic skin response by using a 100 tap lowpass filter with a cutoff
frequency of .5 Hz. Any DC trends that existed within a chart were eliminated using the
detrend function in MATLAB. This function finds the best straight line fit to the data and
then subtracts the line from the data. Each signal was normalized by dividing by its
standard deviation. The raw data and results of this processing are shown in figures 5-14.

Fragments of each signal were accessed before features were extracted. These
fragments were successfully used by Brian M. Duston of the Naval Control and Ocean
Surveillance Center in his study and are given in table 4 [9]. The start and end points
given in table 4 refer to the time elapsed afier the question was asked by the examiner.

Channel Start End

GSR 2 sec. 14 sec.
Upper respiratory 2 sec. 18 sec.
Lower respiratory 2 sec. 18 sec.
Low frequency cardiovascular 2 sec. 18 sec.
High frequency cardiovascular 3 sec. 9 sec.
Derivative of low frequency cardiovascular 0 sec. 8 sec.

Table 4 Time fragments used in feature extraction

10

lSOOI*
1450+
1400 -
1350+ 4
1300 . . . ' ~

0 100 200 300 400 500 600

Figure S Cardiovascular

-0.5 - -

-2.5 J : . : -
0 100 200 300 400 500 6

Figure 6 Preprocessed Low F requenc); Cardiovascular

1 4 § 1

0 100 200 300 400 500 6

Figure 7 Preprocessed Derivative of Low Frequency Cardiovascular

11

0 L

-2

.40 160 260 360 460 560 6
Figure 8 Preprocessed High Frequency Cardiovascular

1160 ‘ y ' ; -

1140+ m | .

: 100O 1 60 260 360 460 560 60(
Figure 9 Upper Respiratory

3 . - -

0 100 200 300 400 500 60(

Figure 10 Preprocessed Upper Respiratory

12

nol v y
\
\

1160

1140
1120
100 100 200 300 400 500 600
Figure 11 Lower Respiratory
4 -

2050

2000

1950
0

100 200

300 400 500 60

Figure 12 Preprocessed Lower Respiratory

100 200

Figure 13 GSR

300 400 500 600

13

Figure 14 Preprocessed GSR

300 400 500 60(

14

5.2 Time Domain Feature Extraction

Many of the time domain features were chosen by talking to examiners and finding
out what was important to them in an examination [10][11]. One feature examiners use to
determine deception involves the height of the peaks in the respiratory signal. If the peaks
become smaller or staircase during a relevant question there is a good chance that the
subject is being deceptive. From looking at different polygraph charts it could be seen that
individual reactions may vary slightly with time. For this reason, many features were
extracted from the respiratory channels in order to determine if the deceptive
characteristics described above may be present. One feature extracted from the
respiratory signal was the average height of the peaks. Because the time fragments from
which the features are extracted remain constant, this feature may not give good results
for subjects reacting early or late. For this reason, the minimum peak height was also used
as a feature. :

To try and capture the effect of staircasing, the average of the derivative of the
amplitudes of the peaks was used as feature. To compensate for early and late reactions,
the maximum of the derivative of the amplitudes of the peaks was also used as a feature.

Another respiratory feature used in this project was the curve length. This feature
was successfully used and researched by Howard Timm in the early 1980's[10]{13].
Interest in curve length lead to curiosity about the area under the respiratory curve. For
this reason it was also extracted to see if it could be used as a feature. Because people
tend to breath quicker when they are stressed or nervous, the number of peaks produced
during a given period of time was used as a feature.

Because it was one of the first features used to successfully determine deception,
Benussi's UVE ratio was tested [3][4]. Benussi's method requires that the IE ratio of the
subject is calculated before and after the examiner asks a question. The value ofthe VE
ratio calulated after the question is asked is then divided by the value of the VE ratio
before the question is asked. According to Benussi's findings, if the ratio is greater than
one, the subject is deceptive. In an attempt to reduce the number of computations
required for Benussi's method, a modification of Benussi's feature was tested. Inthe
modification of Benussi's test, the ratio was taken only after the question was asked and
was not compared to the subjects VE ratio before the question was asked.

The examiners we spoke to would usually try to find evidence of deception in
respiratory signals first. If a subject did not show a strong respiratory response however,
the examiner would analyze the subjects cardiovascular response. Because a subjects
heart rate will often increase when deceptive, the number of peaks in the high frequency
cardiovascular signal was used as a feature. From looking at many charts, it became
evident that some of the processing used in extracting features from the respiratory
channels would also be useful in determining deception from the high frequency
cardiovascular channel. For this reason, the average of the peak height, minimum of the
peak height and curve length were extracted from the high frequency cardiovascular
channel in order to determine if they would be useful features.

Many of the standard statistca! features used in other computerized polygraph
algorithms were also examined [9]. These features included the mean, the standard
deviation, the maximum amplitude, and the minimum amplitude of the signal. Variations

15

of these such as the minimum subtracted from the maximum were also examined.
Although the original use of the curve length and area was to determine deception from
the respiratory channel, it was extracted from the GSR and cardiovascular channels as
well. It was not possible from looking at the signals to determine if the curve length had

changed, but almost any change in a signal would affect this feature. A list of the features

extracted from each channel are given in table 5. The programs used to extract these
features were written in MATLAB and are included in the appendix of this report.

High frequency cardiovascular
1) mean of signal

2) standard deviation of signal
3) minimum value of signal

4) maximum value of signal

5) curve length of signal

6) area under signal

7) average amplitude of peaks
8) minimum amplitude of peaks

9) derivative of the amplitudes of

the peaks in the signal
10) number of peaks in the signal

11) minimum subtracted from maximum

Low frequency cardiovascular
1) mean of signal

2) standard deviation of signal
3) minimum value of signal

4) maximum value of signal

5) curve length of signal

6) area under signal

*7) minimum subtracted from

maximum

Upper and lower respiratory
1) mean of signal

2) standard deviation of signal
3) minimum value of signal

4) maximum value of signal

5) curve length of signal

6) area under signal

7) average amplitude of peaks
8) minimum amplitude of peaks

GSR

1) mean of signal

2) standard deviation of signal

3) minimum value of signal

4) maximum value of signal

5) curve length of signal

6) area under signal

7) minimum subtracted from
maximum

Derivative of low frequency
1) mean of signal

2) standard deviation ofsignal

3) minimum value of signal

4) maximum alue of signal

5) curve length of signal

6) area under signal

7) minimum subtracted from
maximum

9) derivative of the amplitudes of
the peaks in the signal

10) number of peaks in the signal

11) inhalation/exhilation ratio

12) ratio of inhalation ratios before
and after a question is asked

13) minimum subtracted from
maximum

Table 5 List of time domain features

16

5.3 Feature Extraction Methods

To extract the following features which are listed in table 5, (respiratory 7, 8,9,10
,11 and high frequeny cardiovascular 7, 8, 9), it was necessary to locate the peaks of the
respiratory and the high frequency cardiovascular signals. This was not a trivial task
because these signals contained low amplitude high frequency noise which was difficult to
eliminate without distorting the data (see figures 8,10, and 12). In order to find the useful
peaks, two programs were written. The program that found the peaks of the respiratory
signal was titled peaklr and the program that found the peaks in the cardiovascular signal
titled peakcard. Both programs can be found in the appendix. The way that these
programs find peaks is as follows: The second derivative was taken and points that had
values equal to zero were labeled as peaks. The amplitudes of the signal at points near
these peaks were evaluated and the maximum of these values were labeled as peaks.

In order to eliminate the effects of the low amplitude high frequency noise, it was
necessary to check the amplitude of data points that were near each point that had been
labeled as a peak. The number of the data points from the peaks that were determined by
the second derivative was chosen by examining many respiratory and cardiovascular
signals and determining the average width of the peaks in these signals. It was found that
twenty points on each side of the each peak found by the second derivative was a
satisfactory range for the respiratory signals. Similarly eight points on each side of the
initial peak gave would satisfy this criterion for the cardiovascular signal. All of the
routines used to perform these operations are in appendix B (see peak.m, peakcard.m, and
peakir.m).

In order to determine the I/E ratio, it was necessary to find the valleys of the
respiratory signals as well as the peaks. The method used to find the valleys was the same
as that used to find the peaks (see appendix B valley.m and valleylr.m). The IE ratio was
found by the following method. First the time that a valley occurred was subtracted from
the time that a peak occurred. Then the time that the peak occurred was subtracted from
the time that the next valley occurred. The first value was then divided by the second
value (see appendix B ie.m and ieie.m).

6.1 Conclusion

A vector of features was created by the program featurev.m which first executed
all of the preprocessing routines. The program then extracted features for all of the
questions using the times specified in table 4. This program extracted features from all
polygraph files in a directory and produced a set of vectors. These vectors were then used
for training and testing of a fuzzy K nearest neighbor classifier. For details on the
methods used for training and testing as well as the frequency and correlation domain
features used in the study refer to Dastmalchi [14). For details on the K nearest neighbor
algorithm refer to Layeghi [15].

17

(1]

(2]

(3]

(4]

(8]

[9]

[10]

(11]
[12]

(13]

[14]

REFERENCES

Dale E. Olsen, et. al,, "Recent developments in polygraph testing: A research
review and evaluation - A technical memorandum, " Washington,DC: US
Government Printing Office 1983.

John C. Kircher and David C. Raskin, "Human versus computerized evaluations
of polygraph data in a laboratory setting, " Journal of Applied Psycology,
Vol.73, 1988 No2, pp291-308

John E. Reid and Fred E. Inbau, Truth and Deception: The Polygraph (" Lie
Dector ") Technique, The Williams & Wilkins Company, Baltimore, Md., 1966

Michael H. Capps and Norman Ansley, "Numerical Scoring of Polygraph Charts:
What Examiners Really Do", Polygraph, 1992, 21, 264-320

L. A. Zadeh, "Fuzzy sets", Information and Control, vol. 8, pp.338-332, 1965

James C. Bezdek and Sankar K. Pal, Fuzzy Models for Pattern Recognition
Methods that Search for Structures in Data, IEEE Press, Piscataway, NJ. 1992

L. A. Zadeh, "Calculus of fuzzy restrictions," in: L. A. Zadeh, K. S. Fu, K. Tanaka
and M. Shimura, eds., Fuzzy Sets and Their Applications to Cognitive and
Decision Processes, Academic Press, New York, 1975, pp 1-39

Bart Kosko, Neural Networks and Fuzzy Systems, New Jersey : Prentice-Hall,
Inc., 1992.

Brian M. Duston, " Statistical Techniques for Classifying Polygraph Data ",
Draft, November 24, 1992

Howard W. Timm, " Analyzing Deception From Respiration Patterns ", Journal
of Police Science and Administration, 1982, 1, 47 - 51.

Personal communication with Richard Petty (polygraph examiner), June 1993

Personal communication with Christopher B. Pounds (University of Washington),
May 1993

Personal communication with Howard Timm May 1993

Mitra Dastmalchi , " Frequency Domain Features for Pattern Recognition of
Polygraph Data", Masters Project, San Jose State University, November 15, 1993

18

[15]

Shahab Layeghi, " Pattern Recognition of Polygraph Data", Masters Project ,
San Jose State University, November 15, 1993

19

Appendix A

Preprocessing Programs

DERCD.M

function y = dercd(var)

% This extracts the derivative of a lowpass
$ filtered version of the cardio signal.
%
% To use this command the user must enter the file name
%
% eg. dercd(variable name)
g = detlc(var); % detrends the lower frequencies
% of the cardio signal
e = diff(q); § differentiates the lower
% frequencies of the cardio signal
X = e/std(e);
y = [x',x(length(x))"']";

Page 1

DETGSR.M

function y = detgsr(var)

% This function detrends the gsr

%

% To use this command the user must enter the file name
%

% eg. detgsr(file name)

dtrnd = detrend(var(:,1)); .
$ elliminates dc trends in signal
$ eg. a line added to the signal
window = 100;

dtrnd = [dtrnd', zeros(window/2 - 1,1)']';
% adds zeros to end of signal so that no
% information is lost during filter delay

b = firl(window,.03);

x = filter(b,1,dtrnd);

g = x/std(x);

1 = length(q);

y = g(window/2:1); % compensate for time delay

Page 1

DETHIC.M

function y = dethic(var)

% This function detrendeds the high frequencies

% of the cardio signal.

%

% To use this command the user must enter the file name
%

% egq. dethic(file name)

dtrnd = detrend(var(:,2)); % elliminates dc trends in signal
% eg. a line added to the signal

window = 134;
dtrnd = [dtrnd', zeros(window/2 - 1,1)']"';

% adds zeros to end of signal so that no
% information is lost during filter delay

b = firi(window, .035, 'high');
% filter to elliminate low frequencies
x = filter(b,1,dtrnd);
q = x/std(x);
= length(q);
Yy = g{(window/2:1); % compensate for time delay

Page 1

DETLC.M

function y = detlc(var)

% This function extracts and detrends the low

% freguencies of the cardio signal

%

% To use this command the user must enter the file name
%

% eq. detlc(file name)

dtrnd = detrend(var(:,2)); % elliminates dc trends in signal
% eg. a line added to the signal

window = 134;

dtrnd = [dtrnd', zeros(window/2 - 1,1)']}';
% adds zeros to end of signal so that no
% information is lost during filter delay

b = firi(window,.035); $ filter to elliminate high frequencies
x = filter(b,1,dtrnd);

q = x/std(x);

1l = length(q);

y = g(window/2:1); % compensate for time delay

Page 1

DETLR.M

function y = detlr(var)

% This function extracts and detrends the lower respiratory signal
%

$ To use this command the user must enter the file name

%

% eq. detltr(file name)

dtrnd = detrend(var(:,4)); % elliminates dc trends in signal
$ eg. a line added to the signal
window = 240;

dtrnd = [dtrnd', zeros(window/2 - 1,1)']';
% adds zeros to end of signal so that no
% information is lost during filter delay

b = firl(window, .083); § filter to elliminate noise
x = filter(b,1,dtrnd);

q = x/std(x);

1l = length(q);

y = g(window/2:1); % compensate for time delay

Page 1

DETUR.M

function y = detur(var)

$ This function detrends the upper respiratory signal
%

$ To use this command the user must enter the file

%

% eg. detur (file name)

dtrnd = detrend(var(:,3)); % elliminates dc trends in signal
% eg. a line added to the signal

window = 240;

dtrnd = [dtrnd', zeros(window/2 - 1,1)']';
% adds zeros to end of signal so that no
% information is lost during filter delay

b = firl(window,.08); $ filter to elliminate noise
x = filter(b,1,dtrnd);

q = x/std(x);

1 = length(q);

y = g(window/2:1); % compensate for time delay

Page 1

Appendix B

Feature Extraction Programs

function [x,y,z] = featurev(file_name,relevant,irrelevant,control,features)

% This function produces a feature vector for a given file

% Relevent, irrelevent, and control are vectors which contain
% the questions these features are extracted from.

%

% eg. featurev(179,[3 5].[1 4], [6 10] feature_list)

% The above example gives the features for

% the file 179 of the 3rd and 5th question which are relevent in this
% MGQT format, the 1st and 4th question which are irrelevent

% and the 6th and 10th questions which are control

% feature_list=['10mean(frag) ',
% 20curve(frag)';
% '30area(frag) ';

feature_list = features

% The channels are ordered as follows:
% 1:GSR. 2:HiCardio, 3:LowCardio, 4:DerLowCardio, 5:LowResp, 6:UpResp

% This is a matrix of the time delay after asking a question to start of extracting
% the feature, and finish extracting the feature for each channel.

Times={ 2, 14,
3,9;

% These are preprocessing functions.
Preprocess=| ‘detgsr';

'dethic";

‘detlc ',

‘dercd ',

"detlr ',

‘detur '];

data=zeros(6,length(file_name(:,5))),
94 Standardize and detrend the channels and derive new channels

for i=1:6,
data(i,)=eval([Preprocess(i,:), (file_name))’;
end

marker = file_name(;,5); % O begin test and end test
% 0 examiner begins asking question
% 1 examiner finishes asking question
% 2 subject begins response to question
% 9 does not mark an event

begin = find(marker == 0); % finds indecies where marker = 0 (question begins)
begin=begin(2:length(begin)); % elliminates the marker at the beginning of the test
%0 o()/00 00 o0 o%%o 00 oo 00 °0 00 °0 00 o0 00 00 00 o%o oo 00 00 oo oo oo oo °0 00 °0 o0/00 00 00 00 0%0 oo 00 00 00 00 oo 00 00 0%0 00 00 7

% This for loop creates feature vectors for each relevant quesion

%
% eg x = [mean(gsr),std(gsr),area(gsr),mean(lr),std(lr),area(lr) etc.........
% curve length,amplitude of peaks,# of peaks]

%0 00 0%0 0%0 00/00/0o 0%0 °0 Oo °0 00 Oo Oo Oo 0o o%o o° 0° Oo 0° 0° Oo Oo Oo Oo Oo o° Oo Oo Oo °0 0° Oo Oo 00 Oo Oo 0o Oo Oo Oo Oo Oo o° (1]
feature_count=1;

for i = 1:length(relevant),
question=relevant(i),

for j=1:length(feature_list(:,1))

channel_number=eval(feature_list(j,1));
second_channel=eval(feature_list(j,2));
st=begin(question)+30*Times(channel_number,1);
fn=begin(question)+30*Times(channel_number,2),

st2=begin(question)-30*Times(channel_number,2);

fn2=begin(question)-30*Times(channel_number,1);
fr=feature_list(j,3:length(feature_list(1,%))),
frag=data(channel_number,st:fn);
frag2 = data(channel_number,st2:fn2),
if second_channel ~= 0

st3=begin(question)+30*Times(second_channel, 1),
fn3=begin(question)+30*Times(second_channel,2); '
frag3 = data(second_channel,st3:fn3),

end
tempy=eval(fr),

for m = 1:length(tempy)

x(feature_count) = tempy(m),
feature_count=feature_count+1;
end
end
end
%-

% Irrelevant questions

feature_count=1;

for i = 1:length(irrelevant),
question=irrelevant(i);

for j=1:length(feature_list(:,1))
channel_number=eval(feature_list(j,1));

second_channel=eval(feature_list(j,2));
st=begin(question)+30*Times(channel_number,1);
fn=begin(question)+30*Times(channel _number,2);

st2=begin(question)-30*Times(channel_number,2);

fn2=begin(question)-30*Times(channel_number,1);
fr=feature_list(j,3:length(feature_list(1,:)));
frag=data(channel_number,st:fn);
frag? = data(channel_number,st2:fn2);
if second_channel ~= 0

st3=begin(question)+30*Times(second_channel, 1),
fn3=begin(question)+30*Times(second_channel,2);
frag3 = data(second_channel,st3:fn3);

end
tempy=eval(fr);

for m = 1:length(tempy)

y(feature_count) = tempy(m);
feature_count=feature_count+1;
end
end
end

70~

% Control questions
feature_count=1;

for i = 1:length(control),
question=control(i);

for j=1:length(feature_list(;,1})

channel_number=eval(feature_list(j,1));
second_channel=eval(feature_list(j,2));
st=begin(question)+30*Times(channel_number,1);
fn=begin(question)+30*Times(channel_number,2);

st2=begin(question)-30*Times(channel_number,2);

fn2=begin(question)-30*Times(channel_number, 1),
fr=feature_list(j,3:length(feature_list(1,:))),
frag=data(channel_number,st:fn);
frag2 = data(channel_number,st2:fn2);
if second_channel ~= 0

st3=begin(question)+30*Times(second_channel,1);
fn3=begin(question)+30*Times(second_channel,2),
frag3 = data(second_channel,st3:fn3);

end
tempy=eval(fr);

for m = L:length(tempy)

z(feature_count) = tempy(m),
feature_count=feature_count+1;
end
end
end

AMPCARD.M

function y = ampcard(var)

This function finds the average of the amplitudes
of the peaks in the high

cardio signal over a specified period of time.

To use this command the user must enter the
file name and the start and finish points
of the signal to be displayed

0P IO IC I I I IP IO I

eg. ampcard(variable name)

P = peakcard(var); % the indecies of the peaks

for n = 1:length(p)

g(n) = var(p(n)); % amplitude of the peaks

end

Y = sum(q)/length(q);

Page 1

function y = ampr(var)

This function finds the
amplitudes of the peaks
respiratory signal over

To use this command the
enter the variable name

00 dO dP IO I I° JP de

eqg.
p = peaklr(var);

for n = 1:length(p)

q(n) = var(p(n));

end

Yy = sum(q)/length(q);

AMPR.M

average of the
in the lower
a specified period of time.

user must

ampr (variable name)

% the indecies of the peaks

% amplitude of the peaks

Page 1

CURVE.M

function y = curve(var)
This function finds the length of the variable
To use this command the user must enter the

variable name and the start and finish points
of the signal to be displayed

00 o I IO IC IO 0P

eqg. curve(variable name)

sqrt (diff(var)."2 + 1);
sum(x) ;

X
mn

Page 1

IE.M

function y = ie(var)

$ This function takes the i/e ratio of the respiratory signals.
%

$ To use this command the user must enter the variable name

%

% eg. ie(variable name)

p = peaklr(var); % finds the indices of
% the peaks in a signal and puts them
$ in a vector a

plength = length(p);

v = valleylr(var); % finds the indices of the
% valleys in a signal and puts them

% in a vector b
vlength = length(v);

if vlength < 2 | plength < 2 % check that enough peaks
£ and valleys exist for
% the calculation to be done
message = ' Warning !!!! Not enough data'
end

if p(1) > v(1)

for n = 1:vlength - 1

p(n) = v(n); % calculates a vector of
% e/i ratios for the given
% time period

d

z =v(n+ 1) - p(n);

e(n) =q ./ 2;
end

end

if p(1) < v(1)

for n = 1:vlength - 1
qg=p(n+ 1) - v(n); $ calculates a vector of
% e/i ratios for the peaks
% and valleys in the
% given time period
z=v(n+1) -p(n+1);

Page 1

IE.M

e(n) =q ./ z2;
end

end

y = mean(e);

Page 2 |

IEIE.M

function y = ieie(varl,var2)

de IO IO IO dO I IO

o

This function takes the i/e ratio of the respiratory signals
before and after a question is asked. It then divides the two
values.

To use this command the user must enter the variable name

eqg. ieie(variable namel, variable name2)

= je(varl);

n

ie(var2);

= a/b;

Page 1

PEAK.M

function y = peak(var)

$ This function finds the peaks in a signal and returns the index
$ It also creates a plot of the variable with the peaks marked

: To use this command the user must enter the variable name

% of the signal to be displayed

: eqg. peak(variable name)

q = diff(var); % differentiates the variable

z = g>0; $ z =1 if q is greater than 0

f = diff(z); % 2nd derivative of the variable

a = £<0;

y = find(a); $ finds the indices where the 2nd derivative

% is -1 which indicates peak

Page 1

PEAKCARD .M

function y = peakcard(var)

£ This function finds the peaks in

% the cardio signal and returns a vector of

% indexes where they occur.

%

$ To use this command the user must enter the variable name
%

% eg. peakcard(variable name)

ty = peak(var);

if ty(1) < 8
ty = ty(2:1length(ty));
end

if ty(length(ty)) > length(var) - 8
ty = ty(l:length(ty)-1);
end

for n = 1:length(ty);
% finds the maximum peak over a 10 point s

pan
temp = var(ty(n)-8 : ty(n)+8);
z(n) = ty(n) - 9 + find(temp == max(temp));
% finds the time that the peak
% occurs in the original signal
end

for n = 1:length(z)-1 % elliminates duplicate indicies

if z(n) == z(n+l)
z(n) = 0;

end
end
ind = find(z); $ finds indecies of elements

§ that are not equal to zero
for n = 1:length(ind) $ elliminates 0 elements
z(n) = z(ind(n));

end

Page 1

e 0 0 d° d0 de M

PEAKCARD.M

= z(1l:length(ind));
pmark = zeros(l,length(var)); % a vector of 1's where peaks occu

% 0's everywhere else
pmark(y) = ones(1l,length(y));

plot(var,'r')

title('lr marked with peaks')
hold on

plot (5*pmark, 'g')

hold off

PEAKLR.M

function y = peaklr(var)

% This function finds the peaks

% in the lr signal and returns a vector

% of indecies where they occur.

%

$ To use this command the user must enter the variable name
%

% eq. peaklr(variable name)

[b,a] = butter(4,.034); $ elliminate noise

filtout = filtfilt(b,a,var);

ty = peak(filtout); % finds the time that the
$ peaks of filtered lr signal occur

if ty(1) < 20
ty = ty(2:1length(ty));
end

if ty(length(ty)) > length(var) - 20
ty = ty(l:length(ty)-1);
end

for n = 1l:length(ty)

temp = var(ty(n)-20:ty(n)+20);
z(n) = ty(n) - 21 + find(temp == max(temp));
% finds the time that the peak occurs in
% the original signal
end
for n = 1:length(z)-1 % elliminates duplicate indicies
if z(n) == z(n+l)
z(n) = 0;
end
end
ind = find(z); $ finds indecies of elements

$ that are not equal to zero
for n = 1:length(ind) & elliminates 0 elements
z(n) = z(ind(n));

end

Page 1

y = z(1l:length(ind));

PEAKLR.M

Page 2

PEAKNUMC.M

function y = peaknumc(var)

This function finds the number of
peaks in the high cardio signal

To use this command the user
must enter the variable name

0P J° dO JC IO 0P J°

eg. peaknumc (variable name)
= peakcard(var); % the indecies of the peaks

= length(p);

< 'O

Page 1

PEAKNUMR.M

function y = peaknumr(var)

This function finds the number
of peaks in the respiratory signal

To use this command the user
must enter the variable name

0P I dO I I I° I

eq. peaknumr (variable name)

peaklr (var); % the indecies of the peaks

<
!

length(p) ;

Page 1

TSTFEAT.M

feature_list=['lOmean(frag)
'*l10curve(frag)
'10area(fraq)
'20mean(frag)
'20curve(frag)
'20area(fragqg)
'20ampcard(frag)
'20peaknumc (frag)
'30mean(fraqg)
'30curve(frag)
'30area(fragqg)
'4Omean(frag)
'40curve(fraqg)
'40area(fragqg)
'SOmean(frag)
'50curve(frag)
'50area(frag)
'S0ampr (frag)
'50peaknumr (frag)
'50ie(frag)
'50ieie(frag, frag2)
'60mean(frag)
'60curve (frag)
'60area(frag)
'60ampr (frag)
'60peaknunr (frag)
'60ie(frag)
‘60ieie(frag, frag2)

[x y z] = featurev(t79,[1 2],[3 4],[6 10], feature _list)

- @ B @ e @ @ W @ W@ W WM W W @ W W W @ W W W ® W @& @ o @
ad Mo s WE Mo MG WM Wy WY WP We W WE We WP We W WE We WH M We We W We wo -e W

~e

Page 1

VALCARD.M

function y = valcard(var,start,finish)

This function finds the valleys in
the 1lr signal and returns a vector of indexes where
they occur

To use this command the user must enter the
file name and the start and finish points
of the signal to be displayed

O IO dO IC I° IO I0 J0 Je

eg. valcard(file name, start, finish)
X = hicardio(var,start,finish);

[b,a] = butter(4,.034); % elliminate high frequencies
filtout = k; % filtfilt(b,a,k);

ty = valley(filtout,start,finish) % finds the time that the
% peaks of filtered 1lr signal oc
cur

1 = length(ty);

for n = 1:1

temp = k(max(1l,ty(n)-1l0+start) : min(ty(n)+10+start,length(k)
))i

if ty(n)<1o0
dd=length(temp) /2+1;
else
dd=11;
end

y(n) = ty(n) - dd + find(temp == min(temp));

% finds the time that the peak occurs in
% the original signal

end

vmark = zeros(1l,finish - start); ¥ a vector of 1's where peaks occ

ur
% 0's everywhere else
vmark(y) = ones(1,length(y));

subplot (211) ,plot(k(start:finish),'r’)

Page 1

VALCARD.M

title('lr marked with peaks')

hold on

plot (-S*vmark, 'qg')

hold off
subplot(212),plot(filtout(start:finish),'r')
title('filtered lr marked with peaks')
hold on

plot (vmark, 'qg')

hold off
subplot(223),plot(k(start:finish), 'r"')
hold on

plot(5*a(l:finish - start - 3),'g"')
hold off

subplot (224) ,plot(x)

0 Jd° o0 J° Jde Je

subplot (111)

Page 2

VALLEY.M

function y = valley(var)

This function finds the
valleys in a signal and returns the index

To use this command the user
must enter the variable name

d0 0@ IO o 90 de

eg. valley(variable name)

diff (var); $ differentiates the variable

n
n

z=49g>0; $ z =1 if q is greater than O
f = diff(2); % 2nd derivative of variable
a=f>0; % finds valleys

find(a); % finds the indices where the 2nd derivative
$ is +1 which indicates valleys

<
"

Page 1

VALLEYLR.M

function y = valleylr(var)

This function finds the valleys in
the 1lr signal and returns a vector of
indecies where they occur

To use this command the user must enter the variable name

de I J@ JC P 0P I

eg. valleylr(variable name)

[b,a] = butter(4,.034); % elliminate high frequencies
filtout = filtfilt(b,a,var);

ty = valley(filtout); $ finds the time that the
% peaks of filtered 1lr signal occur

for n = l:length(ty)
temp = var (max(1l,ty(n)-20) : min(ty(n)+20,length(var)));

if ty(n)<20
dd=length(temp) /2+1;
else
dd=21;
end

z(n) = ty(n) - dd + find(temp == min(temp));
% finds the time that the peak occurs in
% the original signal

end
for n = 1l:length(z)-1 % elliminates duplicate indicies

if z(n) == z(n+l)

z(n) = 0;

end
end
ind = find(z); % finds indecies of elements

% that are not equal to zero

for n = 1:length(ind) % elliminates 0 elements

z(n) = z(ind(n));

end

Page 1

y = z(l:length(ind));

VALLEYLR.M

‘Page 2

Appendix B: Feature Analysis of the Polygraph
Mitra Dastmalchi

Fall 1993

Fuzzy Pattern Recognition of PolyGraph B 12/19/95

Features Analysis of the Polygraph

A Report
Presented to
The Faculty of the Department of Electrical Engineering
San Jose State University

In Partial Fulfillment
of the Requirements for the degree
of Master of Science

By
Mitra Dastmalchi
December 1993

Acknowledgement

I express may sincere appreciation to all of those who have contributed to this project.
Special recognition goes to my advisor, Dr. Ben Knapp, for his advise and encouragement.
I am also grateful for the help of my partners, Shahab Layeghi and Eric Jacobs. Especially
shahab, for his support and valuable suggestions.

Feature Analysis of the polygraph

By
Mitra Dastmalchi
Sponsor: Dr. Benjamin Knapp
Approved:
Sponsors Signature Date

Graduate Commitee

Name Date

Dr. Sun Chiao

Dr. Richard Duda

Dr. Peter Reischl

Dr. Avtar Singh

Graduate Coordinator

D

-

. Rangaiya Rao

Mitra Dastmalchi, 25800 Industrial Blvd Hayward, CA 94545 Tel: (510)782-3104

Acknowledgement

I express may sincere appreciation to all of those who have contributed to this project.
Special recognition goes to my advisor, Dr. Ben Knapp, for his advise and encouragement.
I am also grateful for the help of my partner, Shahab Layeghi and Eric Jacobs. Especially
shahab, for his support and valuable suggestions.

ot iy

Contents

0 Introduction

1 Polygraph

1.1 Polygraph Examination
1.2 History

1.3 Modern Test Format
1.4 Present Day Equipment

2 Classifier Algorithm
2.1 K-Nearest Neighbor Algorithm

3 Frequency and Correlation Domain Features
3.1 Preview
3.2 Fundamental Frequency
3.3 AR Modeling
3.4 Cross Correlation Function
3.5 Whitening Filter

3.6 Spectral Analysis
3.7 Integrated Spectral Difference

4 Feature Extraction

4.1 Preprocessing
4.2 Feature Selection

5 Results

5.1 Discussion
5.2 Frequency Domain Features Clustering

Conclusion
Appendix A

Appendix B

0 Introduction

The polygraph examination is one of the most popular methods to measure deception.
Polygraph tests are used in criminal investigations to determine if a suspect is being
deceptive when answering the questions concerning a crime. During a polygraph test, the
subject is asked a series of control, relevant and irrelevant questions that provide
physiological responses for comparison with question that are relevant to the investigation.
The three physiological responses that are currently measured are electrocardiogram,
galvanic skin response and respiration. The controversy surrounding the use of polygraph
tests centers on the subjective judgment of polygraph examiners in classifying the subject as
deceptive or non-deceptive. The object of this project is to develop an automatic scoring
system to overcome this perception. The computer algorithm will be able to use more
sophisticated techniques than human examiners, should be more accurate and will ensure
consistency from case to case.

In order to implement the automatic scoring system, two main algorithms were developed.
These were: the feature extraction algorithm, which process the polygraph data in three
time, correlation and frequency domains, and the fuzzy classifier algorithm, which accepts
the features and determines the possibility of deception. Because of the nature of the input,
fuzzy logic was chosen to implement the system which gives the possibility of belonging of
an input to each class. Initially, a set of features based on physiological reactions were
selected. Then, the fuzzy K-nearest neighbor classifier was used to classify the features.

1 Polygraph

1.1 Polygraph Examination

The primary use of the polygraph test is during the investigation stage of the criminal justice
process. In addition to the sigrificance role in criminal justice, they are also used for
national security, intelligence and counterintelligence activities [1]. The three physiological
responses currently obtained from a polygraph examination are electrocardiogram,
respiration and galvanic skin response. Electrocardiogram is measured by placing a standard
cuff on the arm over the brachial artery. Respiration is monitored by placing rubber tubes
around the abdominal area of the subject. Skin conductivity is measured by electrodes
placed on two fingers of the same hand of the subject [1].

The effectiveness of a polygraph examination is often the result of the test format that is
used. A polygraph test format is an ordered combination of relevant question about an
issue, control questions that provide physiological responses for comparison and irrelevant
questions that act as a buffer [1]. An example or a relevant question is, " did you embezzle
any of the missing $12000?" The corresponding control question would be about stealing;
an example is, "did you ever steal money or property from an employer?" The example of
an irrelevant question is, " is your name John?" Irrelevant questions are answered truthfully
and are not stressful. The rational for scoring these tests is that a deceptive subject will be
more threatened by the relevant question than by the control question while a non deceptive
subject will be more threatened by the control questions than the relevant question.

Polygraph charts are usually analyzed by a human interpreter for evidence of truth or
deception. A control question polygraph chart usually consists of 3 sets of control relevant
question pairs separated by neutral questions. The examiner scores the charts by comparing
each relevant question. For each of three physiological responses, he will give a numerical
score ranging from -3 t0 +3, depending on the magnitude of the difference. He then adds up
scores for all control relevant pairs. If the score is below threshold value, he scores the
chart as deceptive or non deceptive.

Sometimes the examiner can not make a clear decision and must score the chart as
inconclusive. The examiner's decision will be based on his or her experience and training.
For example, a change in the polygraph tracing considered by one examiner as a
physiological changes, may be considered by another as an artifact of the recording system.
In an effort to eliminate the inconsistencies involved in interpreting polygraph data,
computer algorithm are being developed.

1.2 History!

The first attempt to use a scientific instrument in an effort to detect deception occurred
around 1895 [2]. That was the year that Cesar Lombroso published the results of his
experiments in which a hydrosphygmograph was used to measure the blood pressure-pulse
changes of criminals in order to determine whether or not they were deceptive. Although
the hydrosphygmograph was originally intended to be used for medical purposes,
Lombroso found that it worked well for lie detection. Lombroso may have been the first
to use a peak of tension test format. This was done by showing a suspect a series of
photographs of children, one being the victim of sexual assault. If the suspect did not
react more to the victims picture than the pictures of the other children, Lombroso
concluded that the suspect did not know what the victim looked like and therefore was not
the alleged perpetrator.

In 1914 Vittorio Benussi published his research on predicting deception by measuring
recorded respiration tracings [3]. He found that if the length of inspiration were divide by
the length of expiration, the ratio would be larger after lying than before lying and also
before telling the truth than after telling the truth. In 1921 John A. Larson constructed an
instrument capable of simultaneously recording blood pressure pulse and respiration
during an examination [2][3]. Larson reported accurate results which prompted Leonarde
Keeler to construct a better version of this instrument in 1926 [2][3].

The use of galvanic skin response in lie detection began during the turn of the century. It's
usefulness, however, did not become evident until the 1930's during which time several
articles written by Father Walter G. Summers of Fordham University in New York [3].

In these articles he reports over 90 criminal cases in which examination using the galvanic
skin response had all been successful and confirmed by confession or supplementary
evidence. The usefulness of the galvanic skin response prompied Keeler to add an
galvanometer to his polygraph. At the time of Keelers death in 1949, the Keeler
Polygraph recorded blood pressure-pulse, respiration, and galvanic skin response [3].

1.3 Modern Test Formats!

The effectiveness of a polygraph examination is often the result of the test format that is
used. A polygraph test format consists of an ordered combination of relevant questions
about an issue, control questions that provide a physical response for comparison, and
irrelevant questions that also provide a response or the lack of a response for comparison
[1][3]. Three general types of test formats are in use today. These are Control Question
Tests, Relevant-Irrelevant Tests, and Concealed Knowledge Tests. Each of the general
test formats may have a number of more specific variations. Each test consists of two to

IThese sections were exerpted from Jacobs [10].

five charts containing a prescribed series of questions. The test format that is used in an
examination is determined by the test objective [2][3].

The concealed knowledge test, also called peak of tension test, is used when facts about a
crime are known only by the investigators and not by the public. In this case, a subject
would not know the facts unless he or she was guilty of the crime. For example, if a gun
was used in a crime and the public did not know the caliber, an examiner could ask a
suspect if it was a 22 caliber, a 38 caliber, or a 9 mm. If the gun used was a 9 mm and the
suspect was deceptive, a polygraph chart would probably indicate evidence of deception.

A control question test is often used in criminal investigations. Relevant-Irrelevant tests
are usually used to test people trying to obtain security clearance or get a job. In this test,
relevant questions are compared to irrelevant questions. Very few control questions are
asked. The purpose of control questions in this test is to make sure that the subject is
capable of reacting at all.

1.4 Present Day Equipment?

The most popular polygraph machines today are the Reid Polygraph developed in 1945
and the Axciton Systems computerized polygraph developed in 1989 [1][4]. The Reid
polygraph scrolls a piece of paper under pens that record the biological signals. The
Axciton polygraph digitizes physiological signals and uses a computer to process them.
The sampling frequency of the Axciton machine is 30 Hz. Axciton provides a computer
based system for ranking the subject responses but allows printouts of the charts to be
scored by hand the traditional way.

Both machines record the same biological signals using standard methods. Blood pressure
is measured by placing a standard blood pressure cuff on the arm over the brachial artery.
Respiration is monitored by placing rubber tubes around the abdominal area and the chest
of the subject. This results in two signals, an upper and lower respiratory signal. Skin
conductivity is measured by placing electrodes on two fingers of the same hand.

2This section was exerpted from Jacobs [10].

PRRERSEY

2 Classifier Algorithm

2.1 K-Nearest Neighbor Algorithm3

K-nearest neighbor algorithm is a supervised classification method. There is no need for
the training or adjusting the classifier. A set of labeled input samples is given to the
classifier. When a new sample is given to the system, it finds its K nearest neighboring
samples, and assigns this sample to the class that the majority of the neighbors belong to.
K could be any positive integer. When K is set to 1, the algorithm is called the nearest
neighbor algorithm. In this case each new sample is assigned to the class of its nearest
neighbor. IfK is greater than 1, it is possible that there is no majority class. To remove
this tie, the sum of the distances of the new sample to its neighbors in each class is
computed and the sample is assigned to the class that has the minimum distance. The
main advantage of using this method is that the samples of each class are not needed to
cluster in a pre specified shape. For example, for a two class classification, the K-nearest
neighbor classifier can still give very good results if the samples of each class are clustered
in two distinct points in the space. The algorithm for the K nearest neighbor is shown in
flow chart 1. It is supposed that C is the number of classes, K is the number of neighbors
in KNN, x, x, is the ith labeled sample and y is the input to be classified.

3This section was exerpted from Layeghi {11].

=

Set first K samples
as K nearest neighbors

Find the distance of
next sample to the

Is it closer
Than the furthest
K nearest Neighbors?

Ne
Switch it wath
the furthest
sample
All samples No
checked?
Yes

Find the majonty class

Is there a tie?

Yes

No

Find sum of the distances of
Neighbors for each class

Assign input to the class
of minimum distance

Flow chart 1. Fuzzy K Nearest Neighbor Algorithm

Assign input to
the majonty class

=D

P —

The fuzzy K nearest neighbor algorithm uses the same idea of conventional K nearest
neighbor algorithm, that is finding the K samples that are closest to sample to be classified.
But there is a conceptual difference in classification. When fuzzy classification is used, the
input is not assigned to a single class. Instead, the degree of belongings of the input to
each class is determined by the classifier. By using this method more information is
obtained about the input. For example if the result of classification determines
membership of an input to class A is 0.9 and to class B is 0.1, it means the input belongs
to class A with a very good possibility. But if the membership to class A is 0.55 and to
class B is 0.45, it means that we cannot be very sure about the classification of the input.
If the crisp classifier is used, in both cases the input will be assigned to class A and no
further information is obtained.

Refer to [5] [6] for more detailed discussions about fuzzy K nearest neighbor algorithms.
The flowchart for a fuzzy K nearest neighbor classifier is drawn in flow chart 2.

The first step in the fuzzy K nearest neighbor algorithm is the same as first step in crisp
classifier. In both cases K nearest neighbors of the input are found. While in crisp
classifier the majority class of the neighbors is assigned to the input, in Fuzzy classifier
membership of the input to each class should be found. In order to do so the membership
vector of each sample is combined to obtain the membership vector of the input. If the
samples are crisply classified, membership vectors should be assigned to them. One
method to do so is to assign the membership of 1 to the class that it belongs to, and
membership of 0 to other classes. Other methods assign different memberships to the
samples according to its distance from the mean of the class, or the distances from the
nearby samples of its own class and the other classes.

When the membership vectors of the labeled samples are specified, they are combined to
find the membership vector of the unknown class. This procedure should be done in a
way that samples that are closer to the input have more effect on the resultant membership
function. The following formula uses the inverse distance to weigh the membership
functions. x is the input to be classified, x; is the jzh nearest neighbor and u;; is the
membership of the jtA nearest neighbor of the input in class i. D(x,y) is a distance measure
between the vectors x and y which could be the Euclidean distance.

iu,j(l/D(x,xj);‘r‘)
u(x)= ’1

Z(I/D(x,xj)"'_l:‘)

J=1

m is a parameter that changes the weighing effect of the distance. When m>> 1, all the
samples will have the same weight. When m approaches 1, nearest samples have much
more effect on the membership value of the input.

Switch it with
the furthest
sample

Ce D

Set first K samples
as K nearest neighbors

Find the distance of
next sample to the

Is it closer
Than the furthest
K nearest Neighbors?

No

Flow chart 2. Fuzzy k nearest neighbor

All samples No
checked?

Find membership of the
input 1o each class using
the following formula

T

b (x)=

X 1
Y u,(1/ D(x,x,)=)

s

X]

> (1/ D(x,x,)=)

=

U

3 Frequency and correlation Domain Features

3.1 Preview

The purpose of this chapter is to show how the frequency and correlation domain
representations of polygraph signals can be used effectively in polygraph analysis. The first
step in analysis of a time series is to plot the data and to obtain simple descriptive
measures of the main properties of the series. For some series, in addition to features such
as trend, seasonal effect and cyclic changes, more sophisticated features such as mean,
variance, auto correlation and frequency content will be required to provide an adequate
analysis.

Most physical processes, including polygraph signals, involve a random element in their
structures. Currently, human examiners score polygraph tests by analyzing obvious
features in the time domain. It is presumed that processing polygraph signals in frequency
and correlation domain will provide features which are discriminator between deceptive
and non-deceptive subjects. Before finding the frequency domain features the trend in the
electrocardiogram channel was eliminated. In order to do so, a high frequency
electrocardiogram channel, called heart pulse, is produced by highpass filtering it.

The goal of this chapter is to explain the techniques used to extract appropriate features in
frequency and correlation domains. The methods for estimating features of the polygraph
signals such as fundamental frequency, spectral density and cross correlation between the
channels will be discussed.

3.2 Fundamental Frequency

One feature which is considered important in the frequency domain is the fundamental
frequency of the signal. The purpose of finding the fundamental frequency is to classify
the way the frequency changes in a specific time segment. The assumption in polygraph
signals is that the frequency of the signal changes after a relevant or a control question is
asked. Different methods have been proposed to find the fundamental frequency of a
signal. One of these methods is using the auto correlation function.

The auto correlation representation of a signal is a convenient way of displaying certain
properties of the signal. For example, the auto correlation function of a periodic signal is
also periodic with the same period. For periodic signals with period P, the auto
correlation function attains a maximum at samples 0,+P ,+2P, Regardless of the time
origin of the signal, the period can be estimated by finding the location of the first
maximum in the auto correlation function [7].

This property makes the auto correlation function an attractive basis for estimating
periodicity in most signals including the electrocardiogram and respiration signals of the
polygraph records. Therefore, a short segment of the signals (electrocardiogram and
respiratory) after each question is selected and pre-processed. The auto correlation is then
calculated for the windowed segments of the heart pulse and respiratory signals using
MATLAB. Figure 1 shows the examples of auto correlation functions computed for heart
pulse with N = 150 and upper respiratory with N = 400 sampled at 30 Hz. N is the
number of samples .

It is noticeable that the auto correlation functions of the above signals are a mixture of
damped exponential and sinusoids. For the heart pulse, peaks occur approximately at
multiples of 20 samples indicating a period of 20/30=0.67 seconds or a fundamental
frequency of approximately 1.5 Hz. For the upper respiratory, peaks occur approximately
at multiples of 133 samples indicating a period of 133/30 = 4.4 seconds or a fundamental
frequency of approximately 0.23 Hz.

1 T ¥ ¥ T L
s , f |\
= 05F } -
® i A .
£ . f f\' f\ \ f ; { / o A)
g U‘““\-J'A‘ h\ f'\l M J l hl((l\ i‘l K f’k /’{I\.r"\‘v/r\"
g d l\; ‘\ J L Jl‘ k]]l }' \ ‘\‘ PRV |V
= J N, o
D'SO 510 160 1450 260 2%0 300k
(a)
D 3 1 Ll] L T
f T
S 02} lf\, .
: 0.1t A fj \ A]
g /AU I U A
3 0 '__/f\’;\\ ~ \ - ,r’ 1 1 A\ j'\v"__/-
\ -
0.1 . \jl 194 v . \{\}f R "
0 100 200 300 400 500 600 700 800
(b)

Figure 1. Plots of auto correlation function for (a) heart pulse and (b) upper respiratory
where k is the number of samples.

12

For some subjects, the period of the electrocardiogram or upper respiratory signal changes
across the N sample interval. Also, the shape of the signal varies somewhat from period
to period. Because of the finite length of segments involved in the computation of auto-
correlation, there is less and less data involved in the computation as the lag increases.
This leads to the reduction in amplitude of the correlation peaks as lag increases.

An important issue is how N should be chosen to give a good indication of periodicity.
Because we are interested in observing changes in signal after the question is asked, N
should be small. On the other hand, it should be noted that to get any indication of
periodicity in the auto correlation function, the window must have the duration of at least
two periods of the waveform. In order to choose the best N, the fundamental frequency
for different time frames without overlap were calculated and the results were examined.
The fundamental frequencies of heart pulse for the four second frame are shown in Table 1
and 2 in Appendix A. No single value of N is entirely satisfactory because the frequency
changes from individual to individual. However, a suitable practical choice for N was
chosen on the order of 180 and 480 for heart pulse and upper respiratory respectively.

3.3 Modeling .

Detailed information about a time series can be obtained from creating a model. In this
section a model will be found for the heart pulse signal. Finding a suitable mode! for a
given time series depends on the properties of the series and the number of observations
available. In signal modeling the output signal is known and the model development is
based upon the fact that signal points are correlated. Estimated auto correlation function
(ACF) of the time series is helpful in identifying which type of ARMA model is
appropriate and gives the best representation of the signal.

The ACF of a MA process cuts off at lag q whereas the ACF of an AR process is a
mixture of damped exponential and sinusoids and dies out slowly. For example, if rl is
significantly different from zero but the subsequent values of » are all close to zero then
an MA(1) model is indicated since its theoretical ACF is of this form. Alternatively, if
ri,r2,rs,.. appear to be decreasing exponentially, then an AR(1) model may be
appropriate.

It is usually difficult to find the order of an AR process from the sample ACF alone. A
model with too low an order will not represent the properties of the signal. Also a model
with too high an order will represent any measurement noise or inaccuracies. Therefore,
neither a high order nor a low order model will be a reliable representation of the signal.
As a result, method that will determine the model order should be used. One approach is
to fit AR processes of progressively higher order, to calculate the squared error for each
value of model order (M), and to plot this against model order. It may then be possible to
see the value of M where the curve flattens out and the addition of extra parameters gives

13

little improvement in fit. Another approach based upon the principals of prediction is that
to increase the model order until the residual process becomes a white noise.

Other criteria have been developed that are based upon concepts in mathematical statistics
[9]. The first one is the final prediction error (FPE),

Fpg = pY M +1 (3.32)
N-M-1

Where P, N and M are error, number of samples and model order respectively.

The fractional portion of FPE increases with M and accounts for the inaccuracies in
estimating the parameters. The other criterion is called Akaike's information criterion
(AIC). Itis:

AIC=NInp2+2P (3.3b)

The first criterion tends to have a minimum at values of M that are less than the model
order and the second one tends to overestimate model order.

The above criteria were calculated for electrocardiogram signal and the results were
plotted in Figure 2. As shown in Figure 2(a), the error decreases but there is no definitive
slope change. The largest decrease occurs from order 1 to 2 and the error does not seem
to decrease significantly with orders greater than 11. For FPE (Figure 2(b)) and AIC
(Figure 2(c)) plots, the error does not decrease much with orders greater than 11. Thus,
the order can be approximately 10. The Levinson-Durbin algorithm was used to calculate
the AR parameters with order 10 for heart pulse. These parameters were used as features.

14

—

[R——

o a———

: squred error
D, 15 L) T 1§ ¥ L]
\
0.1+ \ 4
o e
0.05} e —— e .
U ' '} l Il
0 5 10 (a)15 20 25 30
M
0.15 -350
l \
_ i -400 1
=3 g ;
o 01} S -a50} L
e | < A N
e - ~
\\\...——-\.\ sw \-A_’.,-...,.-ﬁ
005 e -550
0 10 20 30 0 10 20 30
M M
(b) . (c)

Figure 2. The different criteria for heart pulse versus model order (M): (a) error; (b)
FPE; (c) AIC.

3.4 Cross-covariance and cross-correlation functions

In general, it may be necessary to study the interactions between two processes with
possibly different scales of measurement or different variances. In polygraph where time
series data are generated from more than one channel at a time, features like cross-
correlation which contain information about relationships between the channels are
extracted. The cross covariance(Cxs) and cross correlation function (s) are defined as
following:

z

1

" (X (1) —ms)(Y (n+ k) = my)

Cry (k) = 42 ¥ [k=0,1,..(N=-1)] (3.42)
ry = Cxy 1 {J[Cxx (0)Cyy(0)] (3.4b)
where mx= g X](Vn) my = éf—%{l (3.4¢)

Cxx (0) and Cyy(0) are the variances of observations on X and Y respectively.

15

This estimate is asymptotically unbiased. However, the variance of the estimate depends
on the auto correlation functions of the two components. Therefore, for moderately large
values of N it is possible for two series, which are actually uncorrelated, to give rise to
large cross-correlation coefficients which are actually spurious. Thus, both series should
first be filtered to convert them to white noise before computing the cross-correlation
function [8].

In order to determine the relationship between the upper respiratory and heart rate, the
cross correlation between them was calculated. Figure 3 shows the cross correlation
between heart pulse and upper respiratory for a control and a relevant question for two
different deceptive and non deceptive cases.

¢cross correlation deceptive Q=5 cross correlation non-deceptive Q=5

cross correlation deceptive Q=6

0.1

0.05 — 0.04 : :
A ML g ooahathi b i]
ob il pdll i A1 OByl
mhwiv \'«f{; v OIHM'{.,H\%A[W_
Y- LA SR SO SR by
T R S B
T 150 a 250 o % 1c:10 b E:lO 300
(a) (b

cross correlation non-deceptive Q=6

0.1 0.04
| 0.02 i
of ol4;

002}

0.04

Figure 3. Cross correlation between upper respiratory and heart pulse before
modeling. (a) and (b) 90 seconds after relevant question 5. (b) and

(c) 90 seconds after control question 6.

16 -

3.5 Whitening filter

For a given process {x(n)}, the innovation process {v(n)} is defined as a white noise
process such that {v(n)} can be determined from the signal {x(n)} by the whitening filter.
The innovations representation of a random process is a powerful analytic tool. The
innovation process makes the interpretation of the original process simpler than the
original signal. Yet both processes contain the same statistical information. In other
words, there is no loss of information as a result of the transformation.

As stated in section 3.4, it is possible for two series, which are actually uncorrelated, to
give rise to large cross-correlation coefficients which are actually spurious. Thus, the
series should first be filtered to convert them to white noise before computing the cross-
correlation function. The AR parameters were used to design the whitening filter. Then,
the heart pulse signal was filtered to convert it to white noise.

When the time series is white noise and purely random, the neighboring points of the ACF
are uncorrelated. In order to compare the whitening filter output and the theoretical white
noise, both the output of the whitening filter and its auto correlation for electrocardiogram
were plotted in Figure 4. It is seen that the auto correlation shows high correlation for lag
zero (k=175) and small correlation for other lags as it expected.

145 L) L] T T

v(n)

05t ! !
i f

S oy : Ao P
AP, M ol W Lk n
0 50 0 e 20 !

N
o
4

[4))
T

autocorrelation
-
O

3 N Wl L s -
ot Aputri t‘\g.,' %m)‘ ﬁ,}%!k\.ig i H{i{ P‘)‘!ﬂ'f?l’ﬁ\fk ’*ﬂwﬂ)‘l)}‘m k

0 5 100 150 200 250 300 350 400
(b)

Figure 4. Plots of (a) white noise (output of the whitening filter); (b) auto correlation
of the white noise.

17

pna—— e

————

The heart pulse and its innovation process (pre whitening filter output) contain the same
information. The results of cross-correlation between upper respiratory and heart rate
signals after pre whitening are shown in figure 5. It can be seen that the cross-correlation
after modeling is similar to the cross correlation before modeling (Figure 2) with less
spurious peaks. The maximum and minimum value of cross correlation and their lags
were considered as potential features in correlation domain. As presented in figure 5 (b),
heart pulse and upper respiratory channels are positively correlated after the 30 to 90 lags
(1-3 seconds) and are negatively correlated after 130 lags (4.3 seconds).

cross correlation deceptive Q=5 cross correlation non-deceptive Q=5
0.01 0.01

di b e
ha B l_ﬂsj 1& 0.005»-;@- 3‘

; ” \1 . 0;._f?_,.-__.k;‘-_.}.»’_‘:\;?w,_m

cm e e oo

001 }eeeneeee LY S R A
i A R L i A
0.02 : : 001 P
0 100 (a?UD 300 0 100 (bi)’DD 300
cross correlation deceptive Q=6 cross correlation non-deceptive Q=6
0.02 , " 0.02 .
: M § :

W) '; . f ib - 'féﬂﬁl
A of bt T
D.02}-mmees J)L N '*\l s

.0.01 ~Ww-

t)

- -0.02 -
0 100 200 300 0 100 200 300

(c) (d)

-0.04

Figure 5. Cross correlation between heart pulse and upper respiratory after modeling for
(a) and (b) 90 seconds after relevant question 5. (b) and (c) 90 seconds

after control question 6.

18

3.6 Spectral Analysis

In this section the frequency properties of the polygraph signals such as power spectrum
and cross spectral density are analyzed. The cross-correlation and cross spectral density
are the tools for examining the relationships between two signals in the time and frequency
domains respectively. The power spectrum shows how the variance of the signal is
distributed with frequency. The total area underneath the spectrum curve is equal to the
variance of the signal. A peak in the spectrum indicates an important contribution to the
variance at different frequencies.

The estimated spectrum for different channels were plotted on linear scale in Figure 6 and
on logarithmic scale in Figure 7. For spectrum showing large variations in power, a
logarithmic scale makes it possible to show more detail over a wide range. However, this
exaggerates the visual effects of variations where the spectrum is small. It is often easier
to interpret the spectrum plotted on a linear scale than logarithmic scale.

>08 >15

w (7]

5 5

o 08 =Ti |

P { I il

T 0.4} 3 I

& | & st

5 02 5 [1y

% 2

c 0 . . f o O J\ . f
0 5 (a)10 15 0 5 (p)10 15

> 2 >4

% | ¥

5 et 5

Q15')E OBA

© " ®

. 5 05fY o 1)

2 \ 3

a g— . f oo s « £
0 5 10 15 0 5 10 15

(c) (d)

Figure 6. Frequency contents of four polygraph signals on linear scale. (a) GSR for
480 samples, (b) heart pulse for 200 samples, (c) and (d) lower and upper
respiratory for 480 samples.

19

Power Spectral Density

—
o
)

—
D.
w

—_

o
o
o

—

(o]
Y
A

s
o
w

—_
o
o

o

Power Spectral Density

— —
(o] o
o [)

-t
=)
(~d

—h
o
“w

s

o
3

/
/

Power Spectral Density
o
/.r"
7
Power Spectral Density
o

—

=
*
H

—_
o,
D\'n‘
M
—
o
—
(0]
Hh
o
[3,]
-
o
—_
8,

Figure 7. Frequency contents of four polygraph signals on logarithmic scale. (a) GSR
for 480 samples, (b) heart pulse for 200 samples, (c) and (d) lower and upper
respiratory for 480 samples.

Figure 7 shows for GSR the variance is concentrated at low frequencies indicating a trend
or non-stationary behavior. The spectrum for heart pulse signal shows the presence of
harmonics with a large peak at fundamental frequency of f=2 Hz and related peaks at
2f, 3f,These multiples of the fundamental indicate the non sinusoidal character of the
main cyclical component.

The correlation between two signals can be described in the frequency domain by their
cross amplitude, phase spectra or the squared coherency. The coherency measures the
linear correlation between the two components of the two channels at frequency f. The
closer the coherency is to one, the more closely related are the two signals at frequency f.

The MATLAB function spectrum.m finds the cross-spectrum and coherency between
upper respiratory and electrocardiogram and are shown in Figure 8. Their cross spectrum
shows a large peak at f= 2 Hz. Maximum cross spectral density and the magnitude of
cross spectral density and coherency at fundamental frequency and the second harmonic
were considered as features in frequency domain.

20

Pxy - Cross Spectral Density
1-5) T
05|~/ |]
U \“ I 1
0 5 10 15
Cxy - Coherency
1 — L] Ll T
‘5 Iﬁ '/ \\ A
/
N AR A N
05 r \/ \\ f "\ /’ \ A I \, / -
5 ~7 VA N/ W
\\ ’| \J
\ C
U \J 1 _k»--l
0 5 10 - 15
Frequency, Hz

Figure 8. Plots of coherency and cross spectral density between heart pulse and
upper respiratory signals.

3.7 Integrated spectral distance

This section describes how to obtain a feature in the frequency domain called integrated
spectral difference. This feature was introduced by Martin and Pounds [12]. Other
features are calculated separately for each control, relevant and irrelevant questions. The
integrated spectral distance is calculated in a different way than the other features. This
feature is calculated by taking the difference between the cumulative values of the power
spectral density for each relevant and its closest control question. The integrated spectral
distance measures the distance between a control and a relevant question directly. Figure
9 shows the cumulative spectral density for a control and a relevant question. The
maximum, the frequency where this maximum happens and the area underneath were
considered as features.

21

cumulative spectral density for a deceptive case

05 | relevant _)/J

i f
08¢t ._/_f I econtrol
0.7+ J’

06} [f{
|

’ ;

J

|

05
0.4
03
0.2

T

T

0.1

T

frequency

15

Figure 9. Cumulative integrated spectral density for a control question and

relevant question of the heart pulse signal.

22

3.8 Frequency and Correlation Domain Features

Table 1 summarizes the frequency and correlation features explained in the above sections.

Feature Channel
Maximum cross correlation between 2 & 6
Lag of maximum cross correlation between 2 & 6
Minimum cross correlation between 2 & 6
Lag of minimum cross correlation between 2 & 6
Spectral value at fundamental frequency 2
Spectral value at fundamental frequency 6
Spectral value at (fundamental frequency of channel 2) *2 2
Spectral value at (fundamental frequency of channel 6) *2 6
Maximum cross spectral density between 2 & 6
Coherency at fundamental frequency of channel 2 between 2 & 6
Coherency (at fundamental frequency of channel 2)*2 between 2 & 6
Fundamental frequency 2
Fundamental frequency 5
Maximum or minimum integrated spectral difference 1
Frequency of the maximum integrated spectral difference 1
Area underneath integrated spectral difference 1
maximum or minimum integrated spectral difference 2
Frequency of the maximum integrated spectral difference 2
Area underneath integrated spectral difference 2
Autoregressive parameter 2

Table 1. Frequency and correlation domain features.

23

4 Feature extraction

4.1 Preprocessing

This chapter explains the steps taken in feature extraction algorithm. In polygraph tests,
four physiological responses are measured. These responses are: upper respiratory, lower
respiratory, galvanic skin response (GSR) and electrocardiogram. These four polygraph
responses are processed into six channels. A low frequency electrocardiogram channel is
produced by lowpass filtering the electrocardiogram channel. A high frequency
electrocardiogram channel is produced by highpass filtering it. The high frequency
electrocardiogram, called heart pulse, the low frequency electrocardiogram, called blood
volume and derivative of the low frequency electrocardiogram are used instead of one
electrocardiogram channel. To eliminate the noise and any trend, all the signals are
filtered and detrended. For more information about the filtering and detrending refer to
Jacobs [10].

24

4.2 Feature Selection

Many of the time domain features were selected based on the examiners’ suggestions.
However, many of the standard statistical features were also considered as potential
features. For more information about time domain features refer to Jacobs [10]. The
selected features and the channels which they were extracted from are listed below.

Features Channel
1) Mean 1,2,3,4,5,6
2) Standard deviation 1,2,3,4,5,6
3) Minimum 1,2,3,4,5,6
4) Maximum 1,2,3,4,5,6
5) Curve length 1,2,3,4,5,6
6) Mean of derivative 1,2,3,4,5,6
7) Median of derivative 1,2,3,4,5,6
8) Average amplitude of peaks 2.5,6
9) Minimum amplitude of peaks 2,5,6
10) Derivative of amplitudes of peaks 2,5,6
11) Number of peaks 2,5,6
12) Minimum subtracted from maximum 1,2,3,4,5,6
13) Inhalation/exhalation 5,6
14) ratio of inhalation/exhalation before 5,6
and after a question is asked
15) Fundamental frequency 2,5
16) Maximum cross correlation between 2 and 6
17) Lag of maximum cross correlation between 2 and 6
18) Minimum cross correlation between 2 and 6
19) Lag of minimum cross correlation between 2 and 6
20) Spectral value at fundamental frequency between 2 and 6
21) Spectral value at second harmonic between 2 and 6
22) Maximum cross spectral density between 2 and 6
23) Coherency at fundamental frequency between 2 and 6
24) Coherency at second harmonic between 2 and 6
25) Autoregressive parameters(AR) 2
26) Maximum or minimum 1,2
integrated spectral difference (ISD)
27) Frequency of maximum ISD 1,2
28) Area under ISD 1,2

25

4.3 Feature Extraction Algorithm

All features are extracted for 10 relevant, irrelevant and control questions except features
26, 27 and 28 that are extracted for each relevant and its closest control question. The
program called fextract.m extracts all the basic features for each question on each chart
for about 18 non-deceptive and 51 deceptive cases. Due to the small number of non-
deceptive cases, each chart for a subject was used as a separate case. By doing this 50
non-deceptive and 150 deceptive files were created.

The test format used in this project is MGQT format. It is a type of control question test
in which relevant, irrelevant and control questions are asked in a specific order. Each
polygraph test is made of three and in very rare cases four charts for each case. The
order in which the questions are asked is changed in the third and fourth charts and
sometimes in the second chart. The feature extraction routine needs to have the control,
relevant and irrelevant questions labeled. Therefore, for each polygraph chart a
complementary chart called question file was created which contains a matrix called Q.
The first row of this matrix contains the relevant, the second row the irrelevant and the
third row the control questions respectively.

Fragments of each signal are selected before features are extracted. These fragments are
shown in Table 2. Start and end points given in the table refer to the time elapsed after the
question is asked. A vector of features for each file is created by the program feature.m
which is called by fextract.m program. The program first executes all of the processing
routines and then extracts the features for each question in the file. The features are
extracted for the appropriate time segment (see Table 2) of six channels for each
polygraph file. The time segment is created by taking a sample of time series starting
several seconds after a question is asked and continuing for a number of seconds.

26

v——

Channel description Channel Start End

Galvanic Skin conductivity(GSR) 1 2 sec. 14 sec.
High frequency electrocardiogram 2 2 sec. 9 sec.
Low frequency electrocardiogram (LC) 3 2 sec. 18 sec.
Derivative of low frequency 4 0 sec. 8 sec.
electrocardiogram (DLC)

Lower Respiratory (LR) 5 2 sec. 18 sec.
Upper Respiratory (UR) 6 2 sec. 18 sec.

Table 2. Time fragment used in feature extraction

The feature extraction algorithm provides a 960 dimensional vector for each file. The
features were extracted for the 150 deceptive and 50 non deceptive files and saved in a
960 by 200 matrix called " M". In order to classify subjects using the difference between
control and relevant responses, and to make the feature vector smaller, the features were
combined according to the following method: for each feature i except features 26, 27,28
from each subject j compute:

1) The average control responses AvCij
2) The average relevant responses AvRij

3) The maximum and minimum control responses MaxCij and MinCij
4) The maximum and minimum relevant responses MaxRij and MinRij

The feature vector components for feature i are then:

27

1) Fij(1) = AvRij — AvCij
AvRij = AvCij
AvRij + AvCij
3)Fij(3) = MaxRij — MaxCjj
4)Fij(4) = MinRij — MinCij
5)Fij(5) = MaxRij — MinCij
6) Fij(6) = MinRij — MaxCij
MaxRij

MaxCij

2)Fij(2) =

NFy(7)=

For features 26, 27, 28 from each subject j compute:

1) The average of relevant-control responses Av(RC(ij)
2) The maximum of relevant-control responses Max(RC(1j)
3) The minimum of relevant-control responses Min(RC(ij)

The feature vector components for feature i are then:

D) Fy(1) = Av(RC(x))
2)F,(2) = Max(RC(»))
3)Fy(3) = Min(RC (+))

The above procedure is executed by program called procesf.m which creates a 669 by 200
dimensional matrix called "F". In order to run the classifier program, the matrix F was
divided into three 100 (50 deceptive and 50 non-deceptive) sets of matrices called setl,
set2 and set3. These sets are made of 50 non-deceptive cases common in all three sets .
and three 50 different deceptive sets, called deceptive 1, deceptive 2 and deceptive 3
respectively. The list of the files used in the set1, set2 and set3 are shown in Table 3 in

Appendix A.

28

—— ey

5 Results

5.1 Frequency Domain Clustering

Classifier is the final stage in a pattern recognition system. The classifier assigns each
input to one of the classes. The classifier could be designed after studying the distribution
of samples in each class. The KNN classifier was used in this study because of the
following:

1) The uncertainty about the shape of deceptive and non deceptive clusters and
their sample distributions.

2) The possibility that the samples for one class cluster around more than one point
in space.

The frequency domain features did not create a separate distribution of samples for
deceptive and non deceptive classes. However, the combination of frequency and time
domain features resulted in more distinct clusters. Figure 10 and 11 show the examples of
sample distribution (clustering) for non deceptive (x) and deceptive (+) classes.

A clustering of two class data

5 T A 1

at *]

3r]

2} ' -

1t " 4

0 - "\, >‘: + -
1t 4
-2 i 1 1 1 L A 1 .
- -3 -2 -1 0 1 2 3 4

Figure 10. Plot of maximum of GSR versus maximum of Upper Respiratory.

29

A clustering of two class data

2.5 L] 1 L) L] L] 1 L] L
o
2 g e >4+ + £} + -
x w4 R
X i +
15+ .
X

Figure 11. Plot of maximum of GSR versus frequency of maximum integrated
spectral difference of GSR.

30

5.2 Discussion

The 669 features are more than can be used by any classification techniques. Thus, the
classification program and the scatter measurement program were run for each feature in
each set individually. The results of the first experiment were examined and compared to
determine the features which were the best discriminators between deceptive and non-
deceptive subjects. After comparing the results, the 30 features with the highest accuracy
rate and common in all three sets were selected. These best features were listed in

Table 3.

The second experiment used the combination of two features out of the best 30 features.
The results for the best 30 features were examined for each set separately. The set3
always had a better performance than the other two sets. However, in order to be
consistent, the best features common in all three sets were selected as the 30 best features.
More features were added for combination of three and four. The results are shown in
Table 4 and 5 in Appendix A.

As it was discussed before, the classifier was used to compare the effectiveness of the
single features and to choose the combination of the best features. Changing the classifier
parameters such as K might change the results of the classification. However, it is not
practical to change all parameters at the same time. Therefore, the classifier was used
with the fixed parameters of K=5 and m=2. After selecting the final feature set, theses
parameters were changed to find the best classification.

31

No feature Description Channel Method
1 10mean mean GSR 1
2 10curve curve length GSR 2
3 10med dif median of the derivative GSR 1
4 10max_min minimum subtracted from the maximum GSR 2
5 10max maximum of the signal GSR 1
6 10mdif mean of derivative GSR 3
7 20curve curve length Heart pulse 1
8 20ampcard amplitude of the peaks Heart pulse 1
9 20max_min minimum subtracted from the maximum Heart pulse 4
10 20max maximum of the signal Heart pulse 4
11 20min minimum of the signal Heart pulse 1
12 30med dif median of the derivative Blood pressure 3
13 30max maximum of the signal Blood pressure 1
14 40mean mean Derivative of Blood pressure 1
15 40max maximum of the signal Derivative of Blood pressure 1
16 50curve curve length Lower Respiratory 6
17 50ampr amplitude of the peaks Lower Respiratory 2
18 50peaknumr number of the peaks Lower Respiratory 5
19 50ie inhalation divided by exhalation Lower Respiratory 5
20 S50max_min minimum subtracted from the maximum Lower Respiratory 2
21 S0max maximum of the signal Lower Respiratory 6
22 60max_min minimum subtracted from the maximum Upper Respiratory 2
23 60max maximum Upper Respiratory 3
24 10std standard deviation GSR 2
25 20std standard deviation Heart pulse 1
26 50std standard deviation Upper Respiratory 6
27 20armod] auto regressive parameter Heart pulse 7
28 26psdcohl max cross spectral density Heart pulse, Lower 1
Respiratory
29 10isd1 frequency of maximum integrated spectral | GSR 1*
difference of control-relevant pair
30 20isd] area under integrated spectral difference Heart pulse 3*

Methods: 1=Difference of Averages, 2=Normalized Average, 3=Max-Max, 4=Min-Min,

5=Max-Min, 6=Min-Max, 7=Max/Min , 1*=Average of relevant-control pairs, 3*=Max of relevant-

contro] pair.

Table 3. 30 best selected Features

32

Conclusion

The classification results improved consistently by increasing the number of features. The
best features are {5921 23} and {5 21 23 29}with 81 and 80 percent correct
classification respectively. These features are maximum of GSR(S), difference between
maximum and minimum of heart pulse(9), maximum of lower respiratory(21), maximum
of upper respiratory(23) and frequency of maximum integrated spectral difference of
control-relevant pair for GSR(29).

The best features are simple and obvious features such as maximum and minimum of the
polygraph signals. In other words, the features that an examiner can see are the best
discriminators between deceptive and non deceptive.

It is important to notice that the best features are the combination of features from all 4
different GSR, heart pulse, lower and upper respiratory. As expected, each subject shows
reaction to different channels. Therefore, the combination of all channels is the best
representative of deception.

Another point to notice is that the set3 has better classification results than the other two
sets. For example, the features {9 14 19 24} and {5 21 23 29}show 87.4 and 86.6
percent correct classification for set3. The data in set3 is made of 50 non deceptive
common in all three sets and 50 deceptive cases. This set of deceptive cases, called
deceptive 3, are the Acxiton files listed in Table 3 in Appendix A. It is possible that there
is some characteristic in these deceptive files that results in better classification.

As stated before, due to the small number of non-deceptive cases available, each chart for
a subject was used as a separate case. After classifying the charts, the charts for each case
were combined in a way that each case was assigned to the class that the majority of the
charts belong to. Using this method, the classification results improved from 81 percent
to 85.6 percent for setl and set2 and from 87 percent to 91 percent for set3. The final
result is included in appendix A.

33

— s

References

(1]

(2]

[3]

(4]
[3]

[10]

[11]

[12]

Dale E. Olsen, et. al., "Recent developments in polygraph testing: A research
review and evaluation - A technical memorandum, " Washington, DC: US
Government Printing Office 1983.

John E. Reid and Fred E. Inbau, Truth and Deception: The Polygraph (" Lie
Detector ") Technique, The Williams & Wilkins Company, Baltimore, Md., 1966

Michael H. Capps and Norman Ansley, "Numerical Scoring of Polygraph Charts:
What Examiners Really Do", Polygraph, 1992, 21, 264-320

Personal communication with Richard Petty (polygraph examiner), June 1993

J M Keller, MR. Gray and J.A. Givens, "A fuzzy K nearest neighbor algorithm",
IEEE Trans. on syst.Man Cybernetics, vol SMC-15, No.14

J.C. Bezdek and Siew K.Chuan, "Generalized K nearest neighbor rules, Fuzzy sets
and System vol 18(1986).

Rabiner and Schafer, "Digital Processing of Speech Signals", p141.

Jenkins and Watts, 1968, p. 340.

Richard Shiavi, "Introduction to Applied Statistical Signal Analysis", P357.

Eric Jacobs ,"Time Domain Features of Polygraph Data", Masters Project Report,
San Jose State University, Fall 1993.

Shahab Layeghi, "Pattern Recognition of the Polygraph Using Fuzzy Set
Theory", Masters Project report, San Jose State University, Fall 1993.

R. Douglas Martin, Ph.D. and Christopher B. Pounds, Polygraph Reliability, the

Department of Statistics University of Washington Seattle, Washington 98195
October 1,1991- September 30, 1992.

34

Appendices

35

} Appendix A

Tables

36

FILE NAME FUNDAMENTAL FREQUENCY (Hz)
CHANNEL : Heart pulse, WINDOW: 120 S

QQAVS53P6.021 relevant= 1.3636 1.3636 1.3636 1.4286
control= 1.2500 1.5000

QQAVS3P6.031 relevant= 1.5000 1.3636 1.3043 1.3636
control = 1.4286 13636 1.3636 1.4286

QQBQ4SHI.011 relevant= 2 2 2 2
control= 2 2
QQBQ4SHI.021 relevant= 17647 1.7647 1.7647 1.8750

control= 18750 1.76

QQBQ4SHI.031 relevant= 1.7647 1.7647 1.7647 1.7647
control= 0.8571 1.7647 17647 1.6667

QQBSS7WT.011 relevant= 1.5000 1.5000 1.5000 1.3636
control= 1.5789 1.4286

QQBSS7TWT.021 relevant= 1.5000 14286 14286 1.4286
control= 1.5000 1.4286

QQBSS7TWT.031 relevant= 1.4286 1.5000 1.4286 1.3636
control= 14286 1.5000 14286 1.5000

Table 1. Fundamental frequency for non-deceptive files for 120 seconds for heart pulse.

37

FILE NAME FUNDAMENTAL FREQUENCY(Hz)
CHANNEL : CARDIO, WINDOW: 120 S

QQISOWSL.021 relevant= 1.7647 1.6667 1.5789 1.6667
= 1.5789 1.5789

QQ9ISOWSL.031 relevant= 1.5789 15789 1.6667 1.6667
control= 18750 1.6667 1.7647 1.5789

QQ9SQIK9.011 relevant= 1.5789 1.5000 1.5000 1.5789
control = 1.5789 1.5000

QQI9SQIK9.021 relevant= 1.3043 1.5789 1.5789 1.4286
control= 1.5789 1.5789

QQ9SQIKS.031 relevant= 1.5000 1.5000 1.6667
control= 14286 1.2000 1.5789 1.5789

QQIWOBIF.011 relevant= 1.5000 1.4286 1.5000 1.5000
control = 1.4286 1.5789

QQIWOBIF.031 relevant= 1.4286 1.5000 14286 1.4286
control = 1.5000 1.4286

QQ9WOBIF.041 relevant= 14286 13636 14286 1.5000
control= 1.4286 1.3636

QQIU4FMU.011 relevant=- 1.5789 1.6667 1.6667 1.6667
control= 1.6667 1.5789

Table 2. Fundamental frequency for deceptive files for 120 seconds for heart pulse.

38

Non deceptive Jeceptive 1 Deceptive 2 Deceptive 3
QQ8R90I0.011 QQ4Q1083.011 QQ7LX5Q0.021 QQB8RAJOC.011
QQ8R90I10.021 QQ4Q1083.021 QQ7LX5Q0.031 QQ8RAJOC.021
QQ8R9010.031 QQ4Q1083.031 QQ7MN2Y0.011 QQ8RAJ0C.031
QQI5LUIT.011 QQ4Q3MDC.011 QQ7MN2Y0.021 QQ9EUKVT.011
QQ95LUIT.021 QQ4Q3MDC.021 QQ7MN2Y0.031 QQ9EUKVT.021
QQIY5LUIT.031 QQ4Q3MDC.031 QQ7TCSUF.011 QQ9EUKVT.031
QQAURNUS.021 QQ51DE36.011 QQ7TC5UF.021 QQ9100X0.021
QQAURNUS.031 QQS51DE36.021 QQ7TC5UF.031 QQ9I00X0.041
QQAVS53P6.011 QQ51DE36.041 QQ7TQVER.011 QQ9SOWSL.011
QQAVS53P6.021 QQ6RQGH6.011 QQ7TQVER.021 QQISOWSL.021
QQAV53P6.031 QQ6RQGH6.021 QQ7TQVER.031 QQ9SOWSL.031
QQBQ4SHI.011 QQ6RQGH6.031 QQ7TVADC.011 QQ9SQIK9.011
QQBQ4SHI.021 QQ6RQGH6.041 QQ7TVADC.021 QQI9SQIK9.021
QQBQ4SH1.031 QQ6T7110.011 QQ7TVADC.031 QQ9SQIK9.031
QQBSS7WT.011 QQ6T7110.021 QQ7U2T4R.011 QQIWOBSF.011
QQBSS7TWT.021 QQ6T7110.031 QQ7U2T4R 021 QQ9WOBSF.031
QQBSS7WT.031 QQ62591G.011 QQ7U2T4R.031 QQIWOBSF.041
QQ70XM60.021 QQ6Z591G.021 QQ7YP7QU.011 QQ9U4FMU.011
QQ7RHORO.011 QQ62591G.031 QQ7YP7QU.021 QQ9U4FMU.021
QQ7RHORO.021 QQ7PP9B9.011 QQ7YP7QU.031 QQIU4FMU.031
QQ7RHORO.031 QQ7PP9B9.021 QQ7YZ0J3.011 QQIY_SVF.011
QQ7R51P9.011 QQ7PP9B9.031 QQ7YZ0J3.021 QQ9Y_SVF.021
QQ7R51P9.021 QQ7PDU1X.011 QQ7YZ0J3.031 QQ9Y_SVF.031
QQ7R51P9.031 QQ7PDU1X.021 QQ8_0DPT.011 QQ9YH3QF.011
QQ9TDSP3.011 QQ7PDU1X.031 QQ8_0DPT.021 QQIYH3QF.021
QQ9TDSP3.021 QQ7_PIPF.011 QQ8_0DPT.031 QQ9YH3QF.031
QQITDSP3.031 QQ7_PIPF.021 QQ8_ODPT.041 QQA2TT4C.011
QQA80OWOIL.011 QQ7_PIPF.031 QQ8_2UQ9.011 QQA2TT4C.021
QQA80WOI1.021 QQ7_JT70.011 QQ8_2UQ9.021 QQA2TT4C.031
QQA'0OWOI.031 QQ7_JT70.021 QQ8_2UQ%.031 QQA3HIRX.011
QQBT2206.011 QQ7_JT70.031 QQ8001G6.011 QQA3HIRX.021
QQBT2206.021 QQ738DYX.011 QQ8001G6.021 QQA3HIRX.031
QQBT2206.031 QQ738DYX.021 QQ8001G6.031 QQA32UTF.011
QQB090_9.011 QQ738DYX.031 QQ8201U9.011 QQA32UTF.021
QQB0%0_9.021 QQ75ULPI9.011 QQ8201U9.021 QQA32UTF.031
QQB090_9.031 QQ75ULPI.021 QQ8201U9.031 QQA6U_IF.011
QQBC7PP6.011 QQ75ULP9.031 QQ82SUTX.011 QQA6U_IF.031
QQBC7PP6.021 QQ79_EYF.011 QQ828SUTX.021 QQAGU_IF.041
QQBC7PP6.031 QQ79_EYF.021 QQ82SUTX.031 QQAMA4E3L.011
QQCHCK_0.011 QQ79_EYF.031 QQ860ZNU.011 QQAM4E3L.021
QQCHCK_0.021 QQ7BGDML.011 QQ860ZNU.021 QQAM4E3L.031
QQCHCK_0.031 QQ7BGDML.021 QQ860ZNU.031 QQARF2_X.011
QQCDTKP0.011 QQ7BGDML.031 QQ89U_ZR.011 QQARF2_X.021
QQCDTKP0.031 QQ7ETC8I.011 QQ89U_ZR.021 QQARF2_X.031
QQCDTKP0.041 QQ7ETCS81.021 QQ89U_ZR.031 QQAWA38X.011
QQCM5Y56.011 QQ7ETCS81.031 QQ8ATU26.011 QQAWA38X.021
QQCQQT8Y.011 QQ7JAQCS.011 QQ8ATU26.021 QQAWA38X.031
QQCQQT8Y.021 QQ7JAQCS.021 QQ8ATU26.031 QQAYXZGU.011
QQCQQT8Y.031 QQ7JAQCS.031 QQ8FGMVI.011 QQAYXZGU.021
QQCQQT8Y.041 QQ7LX5Q0.011 QQ8FGMVI1.021 QQAYXZGU.031

Table 3. List of files used in this experiment. 50 non-deceptive cases and 50 deceptive

cases from set1, set2 and set3 are listed in column 1 through 4 respective

Set Features accuracy
Setl 10 21 26 79.4
] 11 23 77.6
5 21 23 77.4
Set2 12 20 24 79.8
19 24 30 78.6
S 21 23 77.4
Set3 9 19 24 85.2
s 23 29 82.4
5§ 21 23 81.2
Average 5 23 29 78.2
5 7 23 77.6
5§ 21 23 71.3

Table 4. The three best features of combination of 3 for each set and their average.

Set Features accuracy
Setl 5 9 21 23 81.0
S 11 21 23 80.2
5 21 23 29 74.4
Set2 5 14 23 29 81.0
5 9 21 23 79.4
5 21 23 29 79.0
Set3 9 14 19 24 87.4
5 21 23 29 86.6
s 21 23 9 82.5
Average S 9 21 23 81.0
5 21 23 29 80.0
5§ 21 23 11 79.8

Table 5. The three best features of combination 4 for each set and their average.

File Membership Defuzzified Result
1.0000 0.2736 0
2.0000 0.3339 0
3.0000 0.5397 0 0
4.0000 0.5450 [
5.0000 0.7423 1.0000
6.0000 0.1732 0 0
7.0000 0.8901 1.0000
8.0000 1.0000 1.0000 1 Misclassified
9.0000 0.5376 0
10.0000 0.1742 0
11.0000 0.4366 0 0
12.0000 0.3458 [}
13.0000 0.5145 0
14.0000 0.5178 0 0
15.0000 0.1016 0
16.0000 0 0
17.0000 0 0 0
18.0000 0.1334 0 0
19.0000 0 0
20.0000 0 0
21.0000 0.2923 0 0
22.0000 0 0
23.0000 0 0
24.0000 0.1607 0 0
25.0000 0 0
26.0000 0.4421 0
27.0000 1.0000 1.0000 0
28.0000 0.3307 0
29.0000 0.0583 0
30.0000 0.4965 0 0
31.0000 0.3505 0
32.0000 0.1181)
33.0000 0.2101 0 0

Table 6. Classification of the files in Setl.

4]

File Membership Defuzzified Result

34.0000 0.5970 0
35.0000 0 0
36.0000 0.1193 0 0
37.0000 0.3174 0
38.0000 0.8117 1.0000
39.0000 0.0997 0 0
40.0000 0.1889 0
41.0000 0.4215 0
42.0000 0.1635 0 0

43.0000 0.6474 1.0000

44.0000 0 0
45.0000 0.5495 0 0
46.0000 0.1115 0 0
47.0000 0 0
48.0000 0.3986 0
49.0000 0 0
50.0000 0 0 0

51.0000 0.6709 1.0000

52.0000 1.0000 1.0000

53.0000 0.5297 0 1

54.0000 0.7245 1.0000

55.0000 0.9200 1.0000

56 .0000 1.0000 1.0000 1

57.0000 0.9105 1.0000

58.0000 0.9398 1.0000

59.0000 0.5657 0 1

60.0000 0.8968 1.0000

61.0000 1.0000 1.0000

62.0000 0.2793 0

63.0000 0.1088 0 0 Misclassified

64.0000 0.6245 1.0000

65.0000 0.8643 1.0000

66.0000 0.5054 0 1

Table 6. Continued.

42

File Membership Defuzzified Result
67.0000 0.8498 1.0000

68.0000 0.6969 1.0000

69.0000 0.8397 1.0000 1
70.0000 0.2901 0

71.0000 0.8291 1.0000

72.0000 0.3982 0 0 Misclassified
73.0000 1.0000 1.0000

74.0000 0.2463 0

75.0000 0.8043 1.0000 1
76.0000 0.6676 1.0000

77.0000 1.0000 1.0000

78.0000 1.0000 1.0000 1
79.0000 1.0000 1.0000

80.0000 0.7538 1.0000

81.0000 1.0000 1.0000 1
82.0000 1.0000 1.0000

83.0000 0.8378 1.0000

84.0000 1.0000 1.0000 1
85.0000 0.8926 1.0000

86 .0000 0.5448 0

87.0000 0.5751 0 0 Misclassified
88.0000 0.8273 1.0000

89.0000 0.2945 0

90.0000 0.9110 1.0000 1
91.0000 1.0000 1.0000

92.0000 1.0000 1.0000

93.0000 0 0 1
94.0000 0.2887 0

95.0000 0.2079 0

96 .0000 0.5793 0 0 Misclassified
97.0000 1.0000 1.0000

98.0000 0.7971 1.0000

99,0000 0.8708 1.0000 1
100.0000 1.0000 1.0000 1

Table 6. Continued.

43

—— i

File Membership Defuzzified Result
1.0000 0.2579 0

2.0000 0.1307 0

3.0000 0 0 0
4.0000 0.2652 0

5.0000 0.4345 0

6.0000 0.1175 0 0
7.0000 1.0000 1.0000

8.0000 0.7086 1.0000 1 Misclassified
9.0000 0.2856 0

10.0000 0.2745 0

11.0000 0.3056 [\ [
12.0000 0.2720 0

13.0000 0.5019 0

14.0000 0.8871 1.0000 0
15.0000 0.0912 0

16.0000 0 0

17.0000 0 0)
18.0000 0.8334 1.0000 1 Misclassified
19.0000 0 0
20.0000 0 0
21.0000 0.5483 0 o
22.0000 0 0
23.0000 0 0
24.0000 0.1535 [\ [\
25.0000 0.4955 [

26.0000 0.1013 [
27.0000 1.0000 1.0000 0
28.0000 0.3788 [
29.0000 0.1638 0
30.0000 0.0905 [[
31.0000 0 0
32.0000 0.1431 0
33.0000 0.0937 0 0

Table 7. Classification of the files in set2.

File Membership Defuzzified Result

34.0000 .0 0

35.0000 0 0

36.0000 0.1281 0 0
37.0000 0.3690 0

38.0000 0.5734 0

39.0000 0.1569 0 0
40.0000 0.3659 0

41.0000 0.4124 0

42.0000 0.1704 0 0
43.0000 0.4251 0

44.0000 0.0664 0

45.0000 0.5356 0 0
46 .0000 0.5084 0 0
47.0000 0.1735 0 >
48.0000 0.7512 1.0000

49.0000 0.5115 0

50.0000 0.0976 0 0

51.0000 0.6361 1.0000

52.0000 0.8482 1.0000 1
53.0000 0.3471 0
54.0000 0.8822 1.0000
55.0000 1.0000 1.0000 1

56 .0000 1.0000 1.0000

57.0000 1.0000 1.0000

58.0000 0.8730 1.0000 1

59.0000 0 0

60.0000 0.0389 0

61.0000 0.3643 0 (] Misclassified

62.0000 1.0000 1.0000

63.0000 0.8174 1.0000

64.0000 0.8875 1.0000 1

65.0000 0.7995 1.0000

66.0000 0.5919 0

67.0000 0.7533 1.0000 1

Table 7. Continued.

45

File Membership Defuzzified Result

68.0000 0.7337 1.0000

69.0000 0.8524 1.0000

70.0000 0.8602 1.0000 1

71.0000 0.2217 0

72.0000 1.0000 1.0000

73.0000 0.1268 0 (o] Misclassified
74.0000 0.8860 1.0000

75.0000 0.2121 0

76.0000 0.1684 0

77.0000 0.6903 1.0000 0 Misclassified
78.0000 0.7680 1.0000

79.0000 0.8735 1.0000

80.0000 0.8013 1.0000 1

81.0000 0.1748 0

82.0000 0.5428 0

83.0000 0.8496 1.0000 o] Misclassified
84.0000 0.3444 0

85.0000 0.8298 1.0000

86.0000 0.8590 1.0000 1

87.0000 0.6879 1.0000

88.0000 0.9082 1.0000

89.0000 0.6653 1.0000 1

90.0000 0.1636 0

91.0000 0.8754 1.0000

92.0000 0.85%4 1.0000 1

93.0000 0.5185 0

94.0000 0.4932 0

95.0000 0.7802 1.0000 0 Misclassified
96.0000 0.8684 1.0000

97.0000 0.8788 1.0000

98.0000 1.0000 1.0000 1

99,0000 1.0000 1.0000

100.0000 0.8669 1.0000 1

Table 7. Continued.

46

———

File Membership Defuzzified Result
1.0000 0.3986 0
2.0000 0.2845 0
3.0000 0.2562 0 0
4.0000 0.2786 0
5.0000 0.3226 0
6.0000 0) 0
7.0000 1.0000 1.0000
8.0000 0.5055 0
9.0000 0.1434 0 0
10.0000 0 0
11.0000 o 0 0
12.0000 0.0691 0
13.0000 0.4744 0
14.0000 0.4708 [0
15.0000 0 [
16.0000 0 0
17.0000 0 0)
18.0000 0.4623 o 0
19.0000 0 [}
20.0000 0 0
21.0000 0.2096 0 [\
22.0000 0 0
23.0000 0 0
24.0000 0.0516 [\ 0
25.0000 0.2885 0
26.0000 0.0981 0
27.0000 0.9336 1.0000 0
28.0000 0.225¢ 0
29.0000 0.1465 0
30.0000 0.0680 0 (]
31.0000 0 0
32.0000 0 0
33.0000 0.0939 0 0

Table 8. Classification of the files in Set3.

47

-

File Membership Defuzzified Result
34.0000 0.3917 0

35.0000 0 0

36.0000 [o 0
37.0000 0.1689 [

38.0000 0.5220 0

39.0000 0 0 0
40.0000 0.0969 0

41.0000 0 [}

42.0000 [o [
43.0000 0.4810 0

44.0000 0.3154 0

45.0000 0.4552 0 o
46.0000 0.3285 0 0
47.0000 0.3690 0

48.0000 0.5593 0

49.0000 0.3522 [

50.0000 0.2325 o 0
51.0000 1.0000 1.0000

52.0000 0.9052 1.0000

53.0000 0.8115 1.0000 1
54.0000 0.8397 1.0000

55.0000 0.8754 1.0000

56.0000 0.0930 [1
57.0000 0.8330 1.0000

58.0000 1.0000 1.0000 1
59.0000 1.0000 1.0000

60.0000 1.0000 1.0000

61.0000 1.0000 1.0000 1
62.0000 1.0000 1.0000

63.0000 0.6496 1.0000

64.0000 0.5075 o 1
65.0000 0.0823 [}

66.0000 0.7810 1.0000

67.0000 0.2356 0 0 Misclassified

Table 8. Continued.

48

File Membership Defuzzified

Result

68.0000 1.0000 1.0000

69.0000 1.0000 1.0000

70.0000 1.0000 1.0000 1
71.0000 1.0000 1.0000
72.0000 1.0000 1.0000
73.0000 1.0000 1.0000 1
74.0000 1.0000 1.0000
75.0000 1.0000 1.0000
76 .0000 1.0000 1.0000 1
77.0000 1.0000 1.0000
78.0000 1.0000 1.0000
79.0000 1.0000 1.0000 1
80.0000 0.6068 1.0000
81.0000 0.9054 1.0000
82.0000 0.4134 0 1

83.0000 1.0000 1.0000

84.0000 0 0

85.0000 0.2914 0

0 Misclassified

86.0000 1.0000 1.0000

87.0000 1.0000 1.0000

88.0000 0.8786 1.0000 1
89.0000 0.9018 1.0000

90.0000 1.0000 1.0000

91.0000 1.0000 1.0000 1
92.0000 1.0000 1.0000

93.0000 0.9135 1.0000

94.0000 0.8292 1.0000 1
95.0000 0.7423 1.0000

96 .0000 1.0000 1.0000

97.0000 0.0902 0 1
98.0000 0.2564 0

99,0000 0 0

100.0000 0.4387 0 0 Misclassified

Table 8. Continued.

49

Appendix B

Programs

50

function v=armod(var,M)

% This function finds the autoregressive parameter fo the signal
% and then prewhitens the signal using the prewhiten filter.
% Recursive Levinston and durbin algorithm is used to find the AR parameters

% To use the function the user should enter the signal and the AR model order
% eg armod(variable, model! order)

Fs=30, %sampling frequency
r=xcorr(var,biased'); %rx(0) is at index K
K=length(var),

rx=r(K:K+M+1); %rx(0),rx(1),..x(M)

% Estimate the reflection coefficients

a(1,1)=1;
P=rx(1),

for k=0:M-1
accum=0,
for m=0:k
accum=accum+a(k+1,m+1)*rx(k-m+2);
end
gamma(k+2)=-accum/P;
P=P*(1-abs(gamma(k+2))"2);
a(k+2,1)=1;
a(k+2,k+2)=gamma(k+2);
for m=1:k
a(k+2,m+1)=a(k+1,m+1)+gamma(k+2)*a(k+1,k-m+2);
end
end
parameter=a(M+1,:);

bb=[1];
aa=a(M+1,:);

v=filter(aa,bb,var);

function freq=fundfreq(frag)

% This function called fundfreq (stands for fundamental frequency)

% finds the fundamental frequency of the desired signal.

% for the K interval of a question using autocorrelation function.

% For a periodic signal with the period p, the autocorrelation function

% attains a maximum at 0,p,2p,..

% regardless of the time origin of the signal, the period can be estimated

% by finding the location the first maximum in the autocorrelation function.

%For using this function the user should enter the file segment fundfreq(frag).

Fs=30; %Sampling frequency

K=length(frag);

y = xcorr(frag), % finds the autocorralation function

q = diff{abs(y(K:2*K-1))); % differentiates the variable

z=g>0, % z =1 if q is greater than 0

f = diff{(2); %finds the indices where the 2nd derivative

%is -1 or +1 which indicates peaks and valleys

peak = find(f<0), %finds the peak indices
m =K+peak;
[1,j]=max(abs(y(m))), %finds the maximum peak value and its index

lofreq =find(f>=0),
if length(lofreq)==length(f)
freq=0;
else
freq = Fs/peak(j),

end

O

function y=croscor(varl,var2)

% This function finds the cross correlation between two variables

% The first variable is prewhitened first by calling

% armod (stands for AR modeling) program.

% The function returns maximum and minimum of the croscorrelation
% and the lag that these maximum and minimum happen.

%To use this command the user must enter the two

%variable names to be correlated.

%

% eg. croscor(variablel,variable2)

K=min(length(varl),length(var2)),

M=10; % Model order
vl=armod(varl,M);,

yd= xcorr(v1(20:K),var2(20:K), biased'),
[maximum lagmax]=max(real(yd));
[minimum lagmin]}=min(real(yd));

y=[maximum lagmax minimum lagmin];

— vy

function feature= feature(file_name,relevant,irrelevant,control,features,offset,CR_feature)

% This function produces a feature vector for a given file

% Relevent, irrelevent, and control are vectors which contain
% the questions these features are extracted from.

%

% eg. featurev(t79,[3 51,[1 4], [6 10],feature_list)

% The above example gives the features for

% the file t79 of the 3rd and Sth question which are relevent in this
% MGQT format, the 1st and 4th question which are irrelevent

% and the 6th and 10th questions which are control

% feature list=['10mean(frag) ';
% '20curve(frag)';
% '30area(frag) ';

feature list = features;

% The channels are ordered as follows:
% 1:GSR, 2:HiCardio, 3:LowCardio, 4:.DerLowCardio, 5:LowResp, 6:UpResp

% This is a matrix of the time delay after asking a question to start of extracting
% the feature, and finish extracting the feature for each channel.

Times=][
2, 14;
3,9;
3, 18;
1,8;
2,18;
2, 18];

% These are preprocessing functions.
Preprocess=[‘'detgsr',

‘dethic’;

'detlc ';

'dercd

'detlr ';

'detur '];

o

data=zeros(6,length(file_name(:,5)));
% Standardize and detrend the channels and derive new channels

for i=1:6,
data(i,:)=eval([Preprocess(i,:), (file_name)'])';
end

marker = file_name(:,5); % O begin test and end test
% 0 examiner begins asking question
% 1 examiner finishes asking question
% 2 subject begins response to question
% 9 does not mark an event

begin = find(marker == 0); % finds indecies where marker = 0 (question begins)
begin=begin(2:length(begin)); % elliminates the marker at the beginning of the test

YoY% Y6 %% Yo% %6 Yo Yo% Voo Yo% %Yo Yo Yo Yo% %o S Yoo %% Yo Yo Yo% Yo Yo %% % Yo% %
%6 Y6 %% Ve YoY% SN Yoo Ve Yo Yo% %% oY %o Yo YoY% %% % % %% % % Vo

% This for loop creates feature vectors for each relevant quesion

%

% eg x = [mean(gsr),std(gsr),area(gsr),mean(ir),std(Ir),area(lr),etc.........

% curve length,amplitude of peaks,# of peaks]

I T B o L o e A e et o B B B B B A
T e

feature_count=1;

for 1 = 1. max(find(relevant~=0)),
question=relevant(i);

for j=1:length(feature_list(:,1))
channel_number=eval(feature_list(j,1));
second_channel=eval(feature_list(j,2));
st=begin(question)+30*Times(channel_number,1);
fn=begin(question)+30*Times(channel_number,2);
st2=begin(question)-30*Times(channel_number,2);
fn2=begin(question)-30*Times(channe!_number,1);
fr=feature_list(j,3:length(feature_list(1,:)));
frag=data(channel_number,st:fn);
frag2 = data(channel_number,st2:fn2),
if second_channel ~= 0

end
%

end

st3=begin(question)+30*Times(second_channel, 1),
fn3=begin(question)+30* Times(second_channel,2),
frag3 = data(second_channel,st3:fn3);

end

tempy=eval(fr);

for m = 1:length(tempy)
x(feature_count) = tempy(m);
feature_count=feature_count+1,

end

% Irrelevant questions

feature _count=1,

for i = 1:(max(find(irrelevant~=0))-offset)
question=irrelevant(i);
for j=1:length(feature_list(:,1))

end

end

channel_number=eval(feature_list(j,1));
second_channel=eval(feature_list(j,2));
st=begin(question)+30*Times(channel_number,1);
fn=begin(question)+30* Times(channel_number,2);
st2=begin(question)-30*Times(channel_number,2);
fn2=begin(question)-30*Times(channel_number,1);
fr=feature_list(j,3:length(feature_list(1,:)));
frag=data(channel_number,st:fn);
frag2 = data(channel_number,st2:fn2);
if second_channel ~= 0
st3=begin(question)+30*Times(second_channel, 1),
fn3=begin(question)+30*Times(second_channel,2);
frag3 = data(second_channel,st3:fn3);
end
tempy=eval(fr);
for m = 1:length(tempy)
y(feature_count) = tempy(m);
feature_count=feature_count+1;
end

%

% Control questions

feature_count=1,

for i = 1:max(find(control~=0)),
question=control(i);

for j=1:length(feature_list(:,1))

end

channel_number=eval(feature_list(j, 1));
second_channel=eval(feature_list(j,2));
st=begin(question)+30*Times(channel_number,1);
fn=begin(question)+30* Times(channel_number,2);
st2=begin(question)-30*Times(channel_number,2);
fn2=begin(question)-30*Times(channel_number, 1),
fr=feature_list(j,3:length(feature_list(1,:)));
frag=data(channel_number,st:fn);
frag2 = data(channel_number,st2:fn2),
if second_channel ~= 0
st3=begin(question)+30*Times(second_channel, 1),
fn3=begin(question)+30*Times(second_channel,2),
frag3 = data(second_channel,st3:fn3);
end
tempy=eval(fr);
for m = 1:length(tempy)
z(feature_count) = tempy(m);
feature_count=feature_count+1;
end

Y.

% control & relevant

feature_count=1;

for i = 1:max(find(relevant~=0)),

for k=1:max(find(control~=0)),
q(k)=abs(relevant(i)-control(k));
end

[a b]=min(q);

questionl=relevant(i);
question2=control(b);

for j=1:length(CR_feature(:,1))

end
end

feature=[x,y,z,w]

channel_number=eval(CR_feature(j, 1)),
st=begin(question1)+30*Times(channel number,1),
fn=begin(question1)+30*Times(channel number,2),
st2=begin(question2)+30* Times(channel_number,1),
fn2=begin(question2)+30*Times(channe!_number,2),
fr=CR_feature(j,3:length(CR_feature(1,:)));
frag1=data(channe]_number,st:fn);
frag2=data(channel_number,st2:fn2),
tempy=eval(fr);
for m = 1:length(tempy)
w(feature_count) = tempy(m),
feature_count=feature_count+1;
end

function isd_dif=isd(fragl,frag2)

% This is a integrated spectral difference(isd) function that finds the cumulativespectral
% density of a control-relevant pair, then calculates the difference between the

% isd of control and the relevant for a part of a question.

% This function returns the max or min and the frequency (points)

% where this max or min happens and the area underneath this difference.

% To use this command the user must enter the two variable names.
% The first variable is a control question fragment and the second is
% a relevant question fragment.
% eg. isdl(variablel variable2)

Fs=30;
K=min(length(frag1),length(frag2));

nnp =1,

np = 2”nnp,

L =K/np;
L=2"(nextpow2(L));

M= spectrum (fragl,L); %spectral density of the first (control) question
N= spectrum (frag2,L); %spectral density of the second(relevant) question

pqc = cumsum(M(;,1)); %Cumulative sum of the integrated spectral density
pqr = cumsum(N(;, 1)); %Cumulative sum of the integrated spectral density

clear M
clear N
he = pqc/pqe(L/2),
hr = pqr/pqr(L/2),

CR_dif= hr' - hc',

if (abs(max(CR_dif))>abs(min(CR_dif)))
[CR_dif, mpoint]=max(CR_dif),

else
[CR_dif ,mpoint]}=min(CR_dif),

end

isd_dif=[CR_dif mpoint trapz(hr'-hc')];

—at

feature_list=[

'10mean(frag)
'10curve(frag)
'10area(frag)
'10med_dif(frag,8)
'10max_min(frag)
'10max(frag)
*10min(frag)
'10mdif(frag)
'20mean(frag)
"20curve(frag)
'20area(frag)
"20ampcard(frag)
20dampcard(frag)
'20peaknumc(frag)
'20med_dif(frag,5)
'20max_min(frag)
'20max(frag)
'30min(frag)
'20min(frag)
'20mdif(frag)
'20minampc(frag)
'30mean(frag)
'30curve(frag)
'30area(frag)
'30med_dif(frag,5)
'30max_min(frag)
'30max(frag)
'30mdif(frag)
‘40mean(frag)
'40min(frag)
'40mdif(frag)
‘40curve(frag)
'40area(frag)
'40med_dif(frag.5)
'40max_min(frag)
'40max(frag)
'50mean(frag)
'50curve(frag)
'50area(frag)
'50ampr(frag)
'50peaknumr(frag)
'50ie(frag)
'50dampr(frag)
'50ieie(frag, frag2)
'50med_dif(frag,8)
'50max_min(frag)
'50max(frag)
'50min(frag)
'50mdif(frag)
'50minampr(frag)
'‘60mean(frag)

Lar 0 om

'60curve(frag)
'‘60area(frag)
'‘60ampr(frag)
i '60dampr(frag)
i '60peaknumr(frag)
'60ie(frag)
‘60ieie(frag, frag2)
'60med_dif(frag,8)
'60max_min(frag)
'60max(frag)
'60min(frag)
'60mdif(frag)
'60minampr(frag)
'10std(frag)
'20std(frag)
'30std(frag)
'40std(frag)
'50std(frag)
'60std(frag)
'20armod1(frag)
{ '20corl(frag)
i 'S0cor1(frag) ;
'26croscor(frag,frag3) *;
! "26psdcoh1(frag, frag3) ',

- ® = e e m e w m & = = = ® @ ® = = o & = =
B T u® T o el T T T e T AT N T e T W P Wl Wt L R Rl L

CR_feature=|
; '10isd1(fragl,frag2) 5
i '20isd1(fragl,frag2) T;

If=length(feature_list(:,1));

cd \mgqt\g1
filesl
for d=1:3
, if d==
' cd \mgqt\g2
files2
elseif d=3
cd \mgqt\non_dec
filesn
end

for k=1:length(flist(:,1))
file_name={flist(k,:)];
flength=length(file_name);
question=['ZZ' ,num2str(file_name(3:flength-1)),'4'];
% creates the name of the file that holds the questions(zz*.014) .

——

» 1 ' -

end

end

eval(['load ', file_name]), % load the data & the file with the
eval(['load ', question}]); % question number

file name=file_name(1:flength-4); %eleminates the extention(.013)
question=question(1:flength-4) ; % in order to use the data.
Q=eval(question);

1_rel=max(find(Q(2,:}~=0)); %The length of relevant questions
1_con=max(find(Q(4,:)~=0)); %The length of control questions
1_irr=max(find(Q(3,:)~=0)); %The length of irrelevant questions
qover =|_con+l_rel+]_irr-10; % finds the number of questions over 10

offset=qover*(qover>0);
CRlength=]_rel*6;
size_ M=(10+(qover<0)*qover)*(If+18)+CRlength; %total size of features

initial=zeros(10*(18+1f)+30,1); %Initializing M with a 10*If zeros
M(.,k)=initial;
M(1:size_M,k)=feature(eval(file_name),[Q(2,:)],[Q(3,:)],[Q(4,:)].feature_list,offset,C
R_feature);

eval(['clear ,upper(file_name)))
eval(['clear ',upper(question)])

save new_feat M If flist
clear M

RS

- L & -

clear
featlength=23,
load new_feat

for k=1:length(flist(;,1))
file_name=[flist(k,:)];
flength=length(file_name);
question=['ZZ' num2str(file_name(3:flength-1)),'4";

eval(['load ',question)); % load the file with the question numbers.
Q=eval(question(1:flength-4)); % in order to use the data.
1_rel=max(find(Q(2,:)~=0)); %The length of relevant questions
1_con=max(find(Q(4,:)~=0)), %The length of control questions
I_irr=max(find(Q(3,:)~=0)); %The length of irrelevant questions

% Averaging relevant questions
for j=1:1f-5+featlength
m=(j-1)*7,
clearr
fori=1:1 rel

end

feat_vec(m+1,k)=mean(r);

r(1)=M((-1)*(if-5+featlength)+j k); %finds the feature values

%for all the relevant questions.

%returns mean value for relevant

feat vec(m+2 k)=mean(r);
feat_vec(m+3,k)=max(r),
feat_vec(m+4,k)=min(r),
feat_vec(m+5,k)=max(r);
feat vec(m+6,k)=min(r);
feat_vec(m+7,k)=max(r);

end

qover =|_con+l_rel+]_irr-10 ;

%The number of questions over 10

offset=qover*(qover>0);
I=(1_irr-offset+l_rel)*(If-5+featlength); %The position of the
cr_l=1+l_con*(If-5+featlength); %first control question

%

% Averaging control questions

for j=1:1f-5+featlength

clear ¢
m=(j-1)*7,

fori=1:1_con
c(i)=M((i-1)*(If-5+featlength)+j+] k); %finds the feature values for

——— e

end %.all the control questions.
%feature values for control questions

f{m+1,k)=feat_vec(m+1,k)-mean(c),
if (feat_vec(m+2,k)+mean(c)==0)

fim+2,k)=100;
else
flm+2,k)=2*(feat_vec(m+2,k)-
mean(c))/(feat_vec(m+2,k)+mean(c)); %for every feature.
end

f{m+3,k)=feat_vec(m+3,k)-max(c),
film+4 k)=feat_vec(m+4,k)-min(c),
flm+5,k)=feat_vec(m+5,k)-min(c);
flm+6,k)=feat_vec(m+6,k)-max(c);
if max(cy=0
flm+7,k)=100;
else
flm+7 k)=feat_vec(m+7,k)/max(c),
end
end

%
% feature values for control_relevant

for j=1:6
m=(j-1)*3,
clear cr
for i=1:1_rel
cr(i)=M((i-1)*6+j+cr_Lk);
end

f{m+1+(If-5+featlength)*7,k)=mean(cr),

f{m+2+(If-5+featlength)*7 k)=max(cr);

f{m+3+(If-5+featlength)*7 k)=min(cr);
end

decep(1,k)=Q(1:1); % finds if file is deceptive or not

% creates 1 if deceptive and 0 if not.
eval(['clear ',upper(question(1:flength-4))]);
end

save fn_dec f decep

Appendix C: Pattern Recognition of the Polygraph
Using Fuzzy Set Theory

Shahab Layeghi

Fall 1993

Fuzzy Pattern Recognition of PolyGraph C 12/19/95

Pattern Recognition of the
Polygraph
Using Fuzzy Set Theory

A Report
Presented to
The Faculty of the Department of Electrical Engineering
San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Shahab Layeghi
December 1993

Contents:

I. Introduction
I1. Polygraphs
I11. Feature Extraction and Classification
IV. Conclusion and Future Work
References
Appendices

A. Tables

B. Program Listings

Page

28
29

I. Introduction

Polygraph examinations are the most widely used method to distinguish between truth and
deception. In a Polygraph examination a person is connected to a special instrument
called a Polygraph which records several physiological signals such as blood pressure,
Galvanic Skin Response, and respiration. The subject is asked a set of questions by an
examiner. By looking at these signals the examiner is able to determine the reactions of
the subject to the questions and decide whether the person was truthful or deceptive in
answering each question. The problem with human classification of Polygraph tests is that
the outcome depends on the examiner's experience and personal opinion. Automatic
scoring of Polygraph tests has been a subject of extensive research. Several methods for
Polygraph classification have been studied which are mostly based on statistical
classification techniques.

In this study two main goals were presented. The first goal was finding appropriate
features which have physiological basis. The second purpose was trying a new
classification method based on fuzzy set theory. The advantage of using fuzzy logic is that
the it does not simply assigns each input to one of the classes, but it gives the possibility of
belonging of an input to each class.

Digitized Polygraph data used in this project were collected from various police stations.
The data files were organized according to the test format used and were decoded to
ASCII format so they can be read by Matlab. Preprocessing and feature extraction
routines were implemented in the Matlab language. Three sets of files were chosen, each
one of them contained 50 deceptive and 50 non-deceptive files. These files are listed in
Table 10 in Appendix A. A set of features were selected based on physiological reactions,
and the feature vectors for every file in each set were found. Different classification
methods were studied and a Fuzzy K-nearest neighbor classifier was selected.
Significance of each feature was examined according to the clustering and correct
classification obtained by using that individual feature. Thirty features were selected as
the final set of features and a subset of combinations of 2 to 4 of these features were
examined to study the effects of combining the features on classification results. The

combination that produced the best classification for all three sets on the average was
selected and the effects of changing the classifier parameters on classification was studied.

II. Polygraphs*

A polygraph examination is the most popular method used to determine if an individual is
being truthful or deceptive. During an examination, a subject is asked a series of questions
and the physiological responses to the questions are recorded using a polygraph. The
three physical responses currently obtained from a polygraph examinations are blood
pressure, respiration, and skin conductivity. Polygraph charts are usually analyzed by a
human interpreter for evidence of truth or deception; however, computer algorithms are
now being used to verify results [1][2].

I1.1. History

The first attempt to use a scientific instrument in an effort to detect deception occurred
around 1895 [3]. That was the year that Caesar Lombroso published the results of his
experiments in which a hydrosphygmograph was used to measure the blood pressure-pulse
changes of criminals in order to determine whether or not they were deceptive. Although
the hydrosphygmograph was originally intended to be used for medical purposes,
Lombroso found that it worked well for lie detection. Lombroso may have been the first
to use a peak of tension test format. This was done by showing a suspect a series of
photographs of children, one being the victim of sexual assault. If the suspect did not
react more to the victims picture than the pictures of the other children, Lombroso
concluded that the suspect did not know what the victim looked like and therefore was not

the alleged perpetrator.

In 1914 Vittorio Benussi published his research on predicting deception by measuring
recorded respiration tracings [4]. He found that if the length of inspiration were divide by
the length of expiration, the ratio would be larger after lying than before lying and also
before telling the truth than after telling the truth. In 1921 John A. Larson constructed an
instrument capable of simultaneously recording blood pressure pulse and respiration
during an examination [3][4]. Larson reported accurate results which prompted Leonarde
Keeler to construct a better version of this instrument in 1926 [3][4].

* This section is exerpted from [17]

The use of galvanic skin response in lie detection began during the turn of the century. It's
usefulness, however, did not become evident until the 1930's during which time several
articles written by Father Walter G. Summers of Fordham University in New York [4].

In these articles he reports over 90 criminal cases in which examination using the galvanic
skin response had all been successful and confirmed by confession or supplementary
evidence. The usefulness of the galvanic skin response prompted Keeler to add an
galvanometer to his polygraph. At the time of Keelers death in 1949, the Keeler
Polygraph recorded blood pressure-pulse, respiration, and galvanic skin response [3].

I1.2 Modern Test Formats

The effectiveness of a polygraph examination is often the result of the test format that is
used. A polygraph test format consists of an ordered combination of relevant questions
about an issue, control questions that provide a physical response for comparison, and
irrelevant questions that also provide a response or the lack of a response for comparison
[1][4]. Three general types of test formats are in use today. These are Control Question
Tests, Relevant-Irrelevant Tests, and Concealed Knowledge Tests. Each of the general
test formats may have a number of more specific variations. Each test consists of two to
five charts containing a prescribed series of questions. The test format that is used in an
examination is determined by the test objective [3][4].

The concealed knowledge test, also called peak of tension test, is used when facts about a
crime are known only by the investigators and not by the public. In this case, a subject
would not know the facts unless he or she was guilty of the crime. For example, if a gun
was used in a crime and the public did not know the caliber, an examiner could ask a
suspect if it was a 22 caliber , a 38 caliber, or a9 mm. If the gun used was a 9 mm and
the suspect was deceptive, a polygraph chart would probably indicate evidence of
deception.

A control question test is often used in criminal investigations. In this type of test a series
of relevant, irrelevant, and control questions are asked. A relevant question is one which
is specific to the crime being investigated. For example, " Did you steal the money?". A
control question is designed to make the subject feel uncomfortable. It is not specific to
the crime being investigated however it may be related in an indirect way. A control

question that could follow the relevant question stated above is "Have you ever taken
anything that did not belong to you?". The control questions are compared to the relevant
questions and if the responses to the relevant questions are greater, the subject is usually
classified as deceptive. Irrelevant questions are used as buffers. Examples of irrelevant
questions are "Are the lights in this room on?" or "Is today Monday?".

Relevant-Irrelevant tests are usually used to test people trying to obtain security clearance
or get a job. In this test, relevant questions are compared to irrelevant questions. Very
few control questions are asked. The purpose of control questions in this test is to make
sure that the subject is capable of reacting at all.

I1.3 Present Day Equipment

The most popular polygraph machines today are the Reid Polygraph developed in 1945
and the Axciton Systems computerized polygraph developed in 1989 [1][11]. The Reid
polygraph scrolls a piece of paper under pens that record the biological signals. The
Axciton polygraph digitizes physiological signals and uses a computer to process them.
The sampling frequency of the Axciton machine is 30 Hz. Axciton provides a computer
based system for ranking the subject responses but allows printouts of the charts to be
scored by hand the traditional way. Both machines record the same biological signals
using standard methods. Blood pressure is measured by placing a standard blood pressure
cuff on the arm over the brachial artery. Respiration is monitored by placing rubber tubes
around the abdominal area and the chest of the subject. This results in two signals, an
upper and lower respiratory signal. Skin conductivity is measured by placing electrodes
on two fingers of the same hand.

I1I. Feature Extraction and Classification

I11.1 Introduction

The problem of Classification of Polygraph data like other pattern recognition problems
can be considered of consisting of several main stages. Figure [1] shows these stages and
the relationship between them. At the beginning data is preprocessed so that noise and
redundancies are removed from data and feature extraction can be done more accurately.
The next stage is feature extraction. In this step data is read and appropriate features are
extracted from it. This is a very important step in all pattern recognition problems,
‘because the purpose of pattern recognition is finding similarities in data that belong to the
same class, and features are elements that represent these similarities. Therefore, a good
set of features can lead to good classification whereas a satisfactory result cannot be
achieved with an inappropriate set of features. Having a set of features, the next step is to
use a method to classify data using these features. These steps as applied to Polygraph
classification are described in more details in the following sections. |

POLYGRAPH CLASSIFICATION
t?lgtsa . Feature Classification Classification
Preprocessing Extraction Results

Verified
Classification
Results Comparison
from Police \I/

Performance

Measurement

Figure 1

II1.2. Preprocessing

Polygraph data consists of signals from four different channels: galvanic skin response
(GSR), blood pressure, higher respiration, and lower respiration. First blood pressure
signal was decomposed into a high frequency component showing heart pulse, and a low
frequency component showing blood volume. Derivative of the blood volume channel
was taken and used as another channel. These six derived signals were detrended and

filtered. For more details on preprocessing refer to [17].

I11.3. Feature Extraction

In this step appropriate features are selected and extracted. Feature extraction is itself
divided into several steps. Figure [2] shows different stages involved in feature extraction.

By feature gathering we mean selecting features that might have useful information in

them. Feature Combination is a special step in polygraph classification. In this step

features derived for different questions in a test are combined to build a single feature.

feature selection is a step in which a small number of features is selected from the main

feature set to be used in final classifier section.

Preprocessed
Data

Feature
Set

Feature Feature Feature
Gathering Combination Selection
FEATURE EXTRACTION

Figure 2

I11.3.1. Feature Gathering

Features that possibly convey some information in them were selected and extracted in this
stage. Literature about Polygraph were studied and several Polygraph examiners were
interviewed to find out what had been done about this problem and what characteristics in
a signal are used as indicators of truth or deception. In general features are divided into
three main groups, time domain features, frequency domain features and correlation
features. Time domain features are mostly standard characteristics like mean, standard
deviation, median and so on. Some more specific time domain features were also added,
such as the ratio between inhalation and exhalation. Auto Regressive parameters were
also extracted and tried as features. To extract each feature for each question a time
frame was considered that started with a specific delay after each question was asked and
lasted for a specific amount of time. Different time frames were used for different
channels because each channel represents a different physiological parameter. Frequency
domain features include fundamental frequency, magnitude of power spectral density at
fundamental frequency, coherency at fundamental frequency and so on. Figure 3 shows
the feature gathering and the decisions that involved in this step.

FEATURE GATHERING
Time Domain
Methods Festure
Input What T ing What To Extract
Fifes — Files? = Frep Features? Features (Muzntrix)
Frequency
Domain

Figure. 3

10

For every question in a test 93 features were selected and extracted . Also 6 Integrated
Spectral Density features were used which directly compare each relevant question to the
nearest control question. The total number of features derived for each test was :

93x10+6%x5=960

This was repeated for all the tests in feature sets 1, 2 and 3. The results of each set were
saved in a 960x100 matrix called the M matrix.

For a detailed description of time domain features and frequency domain features refer
respectively to [17] and [16].

I11.3.2. Feature Combination

As mentioned earlier each feature is extracted for all questions in a test, that is for
relevant, irrelevant, and control questions. In a polygraph test responses to relevant
questions are compared to responses to irrelevant and control questions. But in any test
there are several questions of each type and many methods can be used to combine them.
Figure [4] shows different methods to combine the features. It was decided not to use
irrelevant questions in this study, because in a Controlled Question Polygraph Test
comparison between the responses to relevant and control questions is the most important
factor. For most of the features seven methods were tried to combine features of different
questions in a test. For the last six features three ways to combine them were tried. These
methods were finding the average, maximum and minimum of relevant-control pairs. The
first 93 features combined in seven ways and six integrated spectral density features were
combined in three ways so the total number of features at this stage was equal to:

(93%7)+(6X3)=669

11

FEATURE COMBINATION

Subtract the
Use control — averages
- and relevant
seperately
Subtract the
Feature How to combine [~ normalized sverages
Setl features of goor::p?n g
(M matnx) different rel cv:ntm
questions? . Sut imumn
from maximum
Use control,
Ly relevant ¢
and irrelevant .
L]

Divide the averages

Feature
set I

I11.3.3 Feature Selection

Figure 4

Feature selection was done in two independent steps, reduction and combination. Figure
[5] shows the relationship of these two steps. These two steps are explained in the

following two sections.

Feature
SetIl

(669 Features)

FEATURE SELECTION

Reduction

Feature
Set I1I

(30 Features)

Combination

Final
Features

Figure. §

12

I11.3.3.1 Feature Selection (Reduction)

The next step in our Feature Extraction was to reduce the number of features to a number
so that a practical algorithm can be used to select the feature set from them. It was
decided to bring down the number of features from 669 to 30 at this step. Two different
methods were chosen to test the features one at time to find the best 30. The first method
was using the KNN classifier to classify the data files using one feature at a time. It was
decided to use a Fuzzy version of K-nearest neighbor algorithm. The value 5 was selected
for the K because it seemed that it gave better results than the other values for 1 feature
classification . Also a threshold of 0.5 was used to defuzzify the output of the classifier.
Refer to the section on classification for the reason of choosing this classifier. The second
method was using the scatter criterion is given below.

J___(m]—mz)z)

2 2
s, +S,
m, = mean of class i, §; = standard deviation of class i

This criterion measures the distance between the means of the two classes, normalized
over the sum of the variances. Therefore the more compactly the samples in each class re
separated, the higher will be the value of J.

The two methods were run on three sets of data. At this point a method was needed to
choose the features. Different methods are possible for this step. The method that was
followed is shown in figure [6] and explained below. S

At first the results of KNN and scatter criterions were averaged for 3 sets of data so that
features that work well for all data sets would be selected. As mentioned in an earlier
section for Basic features 1 to 93, 7 features and for the features 94 to 99, 3 features were
derived. Because these features are derived from one basic feature and are strongly
correlated, it was decided to choose only one from them. So the best feature from these
sets of 3 or 7 was selected, and the results were sorted.

13

Two sets of 30 features were found using the above mentioned criterions. The next step
was choosing 30 features from these 60. This was done by examining the tables and
selecting the features that showed a good performance in both cases or had a special

physical meaning.

This set of features is the final set used for examining and selection. Table 1 in Appendix
A shows these features with their corresponding meaning, channel used to derive the
feature, and the method to combine the features for different questions.

14

Start

Find the performace
of every feature
for each set

(Use KNN)

Take the average

over the sets

Find the best features

in each row

Find the best 30
features

Find the performace
of every feature

for each set

(Use scatter)

Take the average
over the sets

Find the best features
in each row

Firid the best 30
features

Choose 30 features

End

Figure. 6 Feature Selection (Reduction)

15

I11.3.3.2 Feature Selection (Combination)

The number of features was reduced to 30 in the Feature Reduction step. This number
should be further reduced because there is 100 samples in each data file, and using 30
features in a classifier might give very good results for that particular data set, but it won't
be able to generalize. At this step measuring the performance of individual features is not
a very logical method. Because for example features 'A’ and "B' might be good features
individually, but combining them might not necessarily give better results. Whereas
feature 'C' that might not be a very good feature by itself might improve the classification
if combined with feature 'A'.

Therefore the combinations of the features should be examined. Many methods are
suggested to solve this problem. The most basic way is exhaustive search. That is trying
all the combinations for these features. It is obvious that this is not practical when the
number of features is not very small. For example choosing 10 or less features from a set
of 30 and trying all the different combinations needs

10 ‘ 10 30,
i)=Y ————=10°
20 zi!(3o-i)./

i=] i=]

computations.

The method that was chosen was to start with all the combinations of two, find the best N
ones among them, and use only these combinations to combine features in sets of 3. Then
again find the best combinations of 3 and use them in combinations of 4 features.

This procedure is continued until satisfactory results are gained or features are not
improved by increasing the number of features. Figure [7] shows the algorithm for this
step.

16

Start

Find the performace
of combinations of
2 features for each
set

Select the best
N2 combinations

Find the performace
of combinations of
3 features for each
set

Select the best

N3 combinations

Improvement?

Find the performace
of combinations of
4 features for each
set

End

Figure 7. Feature Selection (Combination)

17

All pairwise combinations of the features were tried to see the classification results. The
classifier used was Fuzzy K-nearest neighbor with a threshold of 0.5, and K=5. This was
done for three sets of features. The results were sorted and 30 best combinations for each
set were found. Also the results of classification for each combination for the 3 sets was
averaged and the 30 combinations that gave best results on the average were found.
These combinations are shown in Table 2 in Appendix A.

It was decided to select 20 sets of pairwise combinations to use in combinations of 3.
Results for sets 1-3 and Average were studied and combinations that showed a good
result in one of the sets or had a good average were selected. Table 3 in Appendix A
shows these combinations.

The same steps were repeated to study the combinations of 3 and 4 features. The results
are shown in Tables 4 and 6 in Appendix A. Because of time limitations it was decided
not to go further from combinations of 4 features.

18

I11.3.4 Discussion about the results:

The classification results improved consistently by increasing the number of features from
one to four. The features that showed the best result for the three sets were features {5,
9, 21, 23}with 81 percent correct classification. These features represent Maximum Of
GSR, Difference between Maximum and Minimum of High Cardio, Maximum of Lower
Respiratory, and the Difference between Maximum and Minimum of Upper Respiratory.
These features show approximately the same classification results for all three sets which
is 81 percent.

Other combinations of features also gave comparable results. For example {5, 21, 23, 29}
and {5, 11, 21, 23}, and {5, 10, 21, 23}. Note the repetition of {5, 21, 23}. Refer to the
table 1 in Appendix A for a meaningful listing of the features. It is very notable that
feature sets that show the best classification results has features that come from different
channels. It can be concluded that signals from different physiological channels convey
independent information, so that using features extracted from them improves the

classification.

Another point to notice is that data set three shows better classification results than the
two other sets, 87 percent versus 81 percent for the sets one and two. The feature set that
gives the best result for data set three is {9, 14, 19, 24}. This feature set gives 87.4
percent correct classification for data set three. The feature set {5, 9, 21, 23} that gives
the best classification on the average, has approximately the same results for all three sets,
81 percent. The polygraph tests that were used in this project came from several sources
and were done by different examiners that used slightly different methods. Fifty
consecutive tests were used to build each data set. So it is possible that some
characteristic exists in the deceptive files of data set three that results in better
classification. This is a matter of future investigation.

19

I11.4. Classification

The classifier is the final stage in a pattern recognition system. The inputs to the classifier
are usually a set of feature vectors. The classifier ordinarily assigns each input to one of
the classes. There are many methods to design a classifier. The classifier could be
designed after studying the distribution of samples of each class, or a learning
classification algorithm can be implemented. We were not sure about the shape of
clustering and the distribution of samples for deceptive and non deceptive classes, and it
was possible that samples for one class cluster around more than one point in space. It
was decided to use the K-nearest neighbor classifier* in this project because it does not
explicitly use the distribution of the samples.

One of the characteristics of the conventional classification methods is that they assign
each input to one of the possible classes (crisp Classification) or find probability
distributions of belongingnesses of the inputs to the classes. While the way that humans
think and classify objects is fundamentally different. Each object can be considered to
belong to more than one class at the same time, and there are degrees of belongingness for
each class. This is the basic idea that is followed in Fuzzy Logic. It was decided to follow
a Fuzzy Logic based classifier in this project, because the output will be the possibility of
deception and a person will not be considered completely deceptive or non deceptive.

Conventional K-nearest neighbor algorithm and a Fuzzy version of it are described in the
following two sections.

* We are indebted 1o Professor R. Duda for suggesting KNN classifier.

20

I1.4.1. K-Nearest Neighbor Algorithm

K-Nearest neighbor algorithm is a supervised classification method. There is no need for
the training or adjusting the classifier. A set of labeled input samples is given to the
classifier. When a new sample is given to the system, it finds its K nearest neighboring
samples, and assigns this sample to the class that the majority of the neighbors belong to.
K could be any positive integer. When K is set to 1, the algorithm is called the nearest
neighbor algorithm. In this case each new sample is assigned to the class of its nearest
neighbor. IfK is greater than 1, it is possible that there is no majority class. To remove
this tie, the sum of the distances of the new sample to its neighbors in each class is
computed and the sample is assigned to the class that has the minimum distance. The
main advantage of using this method is that the samples of each class are not needed to
cluster in a pre specified shape. For example for a two class classification, the K-nearest
neighbor classifier can still give very good results if the samples of each class are clustered
in two distinct points in the space. The algorithm for the K nearest neighbor is shown in
figure 8. It is supposed that C is the number of classes, K is the number of neighbors in
KNN, x,x, is the ith labeled sample and y is the input to be classified.

21

Con D

Set first K samples
s K nearest neighbors

Find the distance of
next sample to the
input

Is it closer

Yes Than the furthest
K nearest Neighbors?
No
Switch it with
the furthest

sample

All samples

Is there a tie?

Find sum of the distances of
Neighbors for each class

checked?

Find the majority class

Assign input to the class
of minimum distance

Assign input to
the majority class

T

Figure 8. K Nearest Neighbor Algorithm

22

I11.4.2. Fuzzy K Nearest Neighbor Algorithm

The fuzzy K nearest neighbor algorithm uses the same idea of conventional K nearest
neighbor algorithm, that is finding the K samples that are closest to sample to be classified.
But there is a conceptual difference in classification. When fuzzy classification is used, the
input is not assigned to a single class. Instead, the degree of belongingness of the input to
each class is determined by the classifier. By using this method more information is
obtained about the input. For example if the result of classification determines
membership of an input to class A is 0.9 and to class B is 0.1, it means the input belongs
to class A with a very good possibility. But if the membership to class A is 0.55 and to
class B is 0.45, it means that we cannot be very sure about the classification of the input.
If the crisp classifier is used, in both cases the input will be assigned to class A and no

further information is obtained.

Refer to [14, 15] for more detailed discussions about fuzzy K nearest neighbor algorithms.
The flowchart for a fuzzy K nearest neighbor classifier is drawn in figure 9.

The first step in the fuzzy K nearest neighbor algorithm is the same as first step in crisp
classifier. In both cases K nearest neighbors of the input are found. While in crisp
classifier the majority class of the neighbors is assigned to the input, in Fuzzy classifier
membership of the input to each class should be found. In order to do so the membership
vector of each sample is combined to obtain the membership vector of the input. If the
samples are crisply classified, membership vectors should be assigned to them. One
method to do so is to assign the membership of 1 to the class that it belongs to, and
membership of 0 to other classes. Other methods assign different memberships to the
samples according to its distance from the mean of the class, or the distances from the
nearby samples of its own class and the other classes.

When the membership vectors of the labeled samples are specified, they are combined to
find the membership vector of the unknown class. This procedure should be done ina
way that samples that are closer to the input have more effect on the resultant membership
function, The following formula uses the inverse distance to weigh the membership

23

functions. X is the input to be classified, x; is the jth nearest neighbor and u is the

membership of the jth nearest neighbor of the input in class i. D(x,y) is a distance measure
between the vectors x and y which could be the Euclidean distance.

iuu(I/D(x,xj)'"%‘)
ui(x)= Jl:l,\» 1

Z(I/D(x,xj)-"'j)

J=1

m is a parameter that changes the weighing effect of the distance. When m>> 1, all the
samples will have the same weight. When m approaches 1, the nearest samples have much
more effect on the membership value of the input.

24

-

Set first K samples
as K nearest neighbors

Find the distance of
next sample to the
input

Is it closer
Than the furthest
K nearest Neighbors?

Switch it with
the furthest
sample

Find membership of the
inpunt to each class using
the following formuls.

@ | iuij(l/D(x,xi)ﬁ)

u(x)= j=lx

Y (1/D(x,x,)ﬁ)

j=

Figure 9. Fuzzy K-Nearest Neighbor 25
Algorithm

111.4.3. Methods and Discussion:

As mentioned in an earlier section the classifier was needed to compare the effectiveness
of single features and to choose the combinations of the features that gave the best
classification results. Therefore, the classifier was selected and used before the final
feature set was determined. The classifier might change the results of the classification
and finding the best classifier is not a trivial task. For example using the value of 10 for K
may change the set of 30 best features that was found by using K=35.

It is not practical to try all different cases for different classifiers and different parameters
of classifiers, so it was decided to use a classifier with fixed parameters up to the point
that final set of features were selected. The classifier as mentioned earlier was a Fuzzy K-
nearest neighbor with the following parameters:

K=S5,
m=2,
Defuzzification threshold = 0.5;

It should be noted that in order to save computation time throughout this project, each set
of files was randomly broken into a training and a testing set. Each file in the testing set
was classified using the labeled files in training set. Each experiment was repeated 20
times, and the results were averaged. The number of files that were used for training and
testing were accordingly 75 and 25. In the last stage of experiments after the final feature
set had been fixed, instead of randomly selecting testing and training files, one file was
kept for testing each time and the experiment was repeated 100 times changing the test
file.

After the final feature set was selected (Refer to the section on Feature Extraction),
different values for K were tried on fuzzy and crisp classifier to compare the two
classifiers and find the best parameters. In addition to percentage of correct classification
a measure of performance was also used which is explained below.

The measure that is used to compare the performance of fuzzy classifier is the root mean
square of the distances between the output of the classifier and the correct class. The
correct ouput of the classifer should be 0 for non-deceptive cases and 1 for the deceptive

26

ones. For example if for a deceptive sample the classifier output is 0.8, 0.2 is the distance
between the output and the correct class. The same measure is used for the crisp
classifier. In the case of the crisp classifier the distance is always 0 for correct
classification and 1 for incorrect classification.

For the fuzzy classifier the threshold used for defuzzification was also changed to find the
optimum value. Tables 7 and 8 in Appendix A show the results. The best classification on
the average over three sets is obtained using the fuzzy classifier with K = 6, and threshold
= 0.6 . Using this values correct classification of 81.6 percent was achieved. The best
result using the crisp classifier was 80.6 percent which was obtained using K=6. The
performance measures for the fuzzy and crisp classifiers were accordingly 0.3915 and
0.4377 which shows fuzzy classifier has a better performance in this respect.

One final experiment that was done is explained below. In a Polygraph examination a set
of questions is repeated one to five times and the decision is made by considering the
responses to all these charts. In this project each chart was classified separately. As the
final experiment responses to all the charts in a Polygraph examination were combined and
classified as deceptive or non-deceptive. The way they were combined was finding the
majority class and assigning the case to that class. In the case that equal number of files
classified as deceptive and non-deceptive, the membership function of the files was
averaged and the case was classified according to this value. The classification results for
all the files in sets 1 to 3 are shown in Table 9 in Appendix A. The number of cases in
each set was 35. The number of misclassified cases in sets 1 to 3 are 5, 7, and 3, which
correspond to correct classifications of 85.7, 80.0, and 91.4 pefcent.

27

IV. Conclusion and future work

The set of four features that showed best classification results in this project were
Maximum of GSR, Upper Respiration and Lower respiration signals, and the difference
between the Maximum and Minimum of High Cardio signal. These are all very simple
time domain features. The best classification was obtained using the fuzzy classifier with
K = 6, and threshold = 0.6 . Using this values correct classification of 81.6 percent was
achieved. By combining all the files in a Polygraph examination 85.7 percent correct
classification was achieved on the average.

There are several suggestions for the future work. First is to repeat this work with larger
sets of data files and observe the generalizability of the feature sets obtained in this
research. A possible way to improve the results is to change time frames used to extract
each feature for every question. In this way the optimum time for obtaining a response
could be found. Another suggestion is to try different methods for fuzzification and
defuzzification of feature vectors to optimize the fuzzy classifier.

28

REFERENCES

[1] DaleE. Olsen, et. al, "Recent developments in polygraph testing: A research
review and evaluation - A technical memorandum, " Washington DC: US
Government Printing Office 1983.

[2] John C. Kircher and David C. Raskin, "Human versus computerized evaluations
of polygraph data in a laboratory setting, " Journal of Applied Psycology,
Vol.73, 1988 No 2, pp. 291-308

[3] JohnE. Reid and Fred E. Inbau, Truth and Deception: The Polygraph (Lie
Detector) Technique, The Williams & Wilkins Company, Baltimore, Md., 1966

[4] Michael H. Capps and Norman Ansley, "Numerical Scoring of Polygraph Charts:
What Examiners Really Do", Polygraph, 1992, 21, 264-320

[5] L. A Zadeh, "Fuzzy sets", Information and Control, vol. 8, pp. 338-332, 1965

[6] James C. Bezdek and Sankar K. Pal, Fuzzy Models for Pattern Recognition
Methods that Search for Structures in Data, IEEE Press, Piscataway, NJ. 1992

[7] L. A. Zadeh, "Calculus of fuzzy restrictions," in: L. A. Zadeh, K. S. Fu, K.
Tanaka and M. Shimura, eds., Fuzzy Sets and Their Applications to Cognitive and
Decision Processes, Academic Press, New York, 1975, pp. 1-39

(8] Bart Kosko, Neural Networks and Fuzzy Systems, New Jersey : Prentice-Hall,
Inc., 1992.

[9] Brian M. Duston, " Statistical Techniques for Classifying Polygraph Data ",
Draft, November 24, 1992

[10] Howard W. Timm, " Analyzing Deception From Respiration Patterns ", Journal
of Police Science and Administration, 1982, 1, 47 - 51.

[11] Personal communication with Richard Petty (polygraph examiner), June 1993

[12] Personal communication with Christopher B. Pounds (University of Washington),
May 1993 '

[13] Personal communication with Howard Timm, May 1993

29

[14]

[15]

(16]

[17]

JM. Keller, M.R. Gray and J.A. Givens, "A Fuzzy K Nearest Neighbor
Algorithm", IEEE Trans. on Syst. Man. Cybernetics, vol SMC-15, no. 4

J.C. Bezdek and Siew K. Chuah, "Generalized K-Nearest Neighbor Rules, Fuzzy
Sets and Systems vol. 18 (1986) :

Mitra Dastmalchi, "Feature Analysis of the Polygraph", Master's Project, San Jose
State University, December 1993

Eric Jacobs, "Time Domain Feature Extraction of the Polygraph", Master's
Project, San Jose State University, December 1993

30

31

Appendices

Appendix A:
Tables

No. | feature Description Channel Method
1 10mean mean GSR 1
2 10curve curve length GSR 2
3 10med dif median of the derivative GSR 1
4 10max_min minimum subtracted from the maximum GSR 2
5 10max maximum of the signal GSR 1
6 10mdif mean of derivative GSR 3
7 20curve curve length High Cardio 1
8 20ampcard amplitude of the peaks High Cardio 1
9 20max_min minimum subtracted from the maximum High Cardio 4
10 20max maximum of the signal High Cardio 4
11 20min minimum of the signal High Cardio 1
12 30med_dif median of the derivative Low Cardio 3
13 30max maximum of the signal Low Cardio 1
14 40mean mean Derivative of Low Cardio 1
15 40max maximum of the signal Derivative of Low Cardio 1
16 50curve curve length Lower Respiratory 6
17 50ampr amplitude of the peaks Lower Respiratory 2
18 50peaknumr number of the peaks Lower Respiratory 5
19 50ie inhalation divided by exhalation Lower Respiratory 5
20 50max_min minimum subtracted from the maximum Lower Respiratory 2
21 50max maximum of the signal Lower Respiratory 6
22 60max_min minimum subtracted from the maximum Upper Respiratory 2
23 60max maximum Upper Respiratory 3
24 10std standard deviation GSR 2
25 20std standard deviation High Cardio 1
26 50std standard deviation Upper Respiratory 6
27 20armod! auto regressive parameter High Cardio 7
28 26psdcoh] max cross spectral density High Cardio, Lower Respiratory 1
29 10isd1 frequency of maximum integrated spectral GSR 1*
difference of control-relevant pair
30 20isd1 area under integrated spectral difference High Cardio 3*

Methods: 1=Difference of Averages, 2=Normalized Average, 3=Max-Max, 4=Min-Min,
5=Max-Min, 6=Min-Max, 7=Max/Min , 1*=Average of relevant-control pairs, 3*=Max of relevant-

control pair.

Table 1. Selected Features

Percentage of correct classification for 30 best combinations in set 1

Percent correct Feature 1 | Feature 2
74.2000 8.0000 18.0000
74.0000 10.0000 21.0000
73.0000 5.0000 7.0000
72.0000 24.0000 26.0000
71.8000 23.0000 24.0000
71.6000 4.0000 26.0000
70.4000 25.0000 26.0000
70.4000 18.0000 25.0000
70.2000 24.0000 27.0000
70.2000 9.0000 21.0000
70.0000 5.0000 27.0000
69.6000 11.0000 21.0000
69.6000 9.0000 24.0000
69.4000 11.0000 27.0000
69.4000 5.0000 26.0000
69.2000 8.0000 19.0000
69.2000 5.0000 18.0000
69.0000 25.0000 27.0000
69.0000 9.0000 18.0000
69.0000 5.0000 23.0000
68.8000 24.0000 30.0000
68.8000 18.0000 20.0000
68.8000 17.0000 20.0000
68.8000 4.0000 15.0000
68.6000 22.0000 24,0000
68.4000 6.0000 24.0000
68.4000 1.0000 27.0000
68.2000 15.0000 24.0000
68.2000 9.0000 26.0000
68.2000 5.0000 19.0000

Table [2.1] Results of pairwise combinations of features

Percentage of correct classification for 30 best combinations in set 2

Percent correct | Feature 1 Feature 2
74.4000 5.0000 23.0000
74.4000 4.0000 27.0000
74.2000 4.0000 15.0000
74.0000 20.0000 24.0000
73.6000 16.0000 24.0000
73.2000 3.0000 27.0000
72.8000 27.0000 30.0000
72.6000 4.0000 30.0000
72.6000 4.0000 7.0000
72.4000 5.0000 25.0000
72.2000 24,0000 30.0000
72.2000 8.0000 27.0000
72.2000 4.0000 17.0000
72.2000 4.0000 16.0000
72.0000 24.0000 27.0000
72.0000 24.0000 25.0000
72.0000 4.0000 20.0000
71.8000 7.0000 23.0000
71.8000 4.0000 10.0000
71.2000 25.0000 27.0000
70.8000 24.0000 26.0000
70.8000 8.0000 22.0000
70.6000 7.0000 27.0000
70.6000 6.0000 27.0000
70.4000 14.0000 21.0000
70.4000 14.0000 20.0000
70.4000 4.0000 8.0000
70.2000 4.0000 24.0000
70.0000 22.0000 27.0000
70.0000 17.0000 24.0000

Table [2.2] Results of pairwise combinations of features

Percentage of correct classification for 30 best combinations in set 3

Percent correct | Feature 1 Feature 2
81.0000 1.0000 10.0000
80.6000 9.0000 24.0000
80.4000 10.0000 24.0000
80.4000 4.0000 25.0000
80.2000 4.0000 9.0000
79.8000 5.0000 11.0000
79.2000 17.0000 24.0000
79.2000 1.0000 21.0000
79.2000 1.0000 8.0000
79.0000 1.0000 24.0000
79.0000 1.0000 11.0000

- 78.8000 4.0000 11.0000
78.6000 4.0000 17.0000
78.2000 24.0000 25.0000
78.2000 1.0000 14.0000
78.0000 1.0000 23.0000
78.0000 1.0000 20.0000
77.8000 23.0000 24.0000
77.8000 1.0000 5.0000
77.6000 19.0000 24.0000
77.4000 11.0000 24.0000
77.4000 5.0000 18.0000
77.2000 4.0000 19.0000
77.0000 4.0000 18.0000
76.8000 4.0000 15.0000
76.6000 5.0000 13.0000
76.6000 4.0000 24.0000
76.2000 4.0000 5.0000
76.2000 1.0000 26.0000

Table [2.3] Results of pairwise combinations of features

Percentage of correct classification for 30 best combinations in average

Percent correct | Feature 1 Feature 2
73.2667 4.0000 15.0000
72.8000 24.0000 26.0000
72.6667 4.0000 17.0000
72.6000 5.0000 23.0000
72.2667 23.0000 24.0000
72.0667 24.0000 30.0000
719333 20.0000 24.0000
71.8667 24.0000 27.0000
71.4667 24.0000 25.0000
71.4000 4.0000 26.0000
71.0667 4.0000 10.0000
70.9333 1.0000 8.0000
70.9333 4.0000 23.0000
70.6000 5.0000 11.0000
70.6000 4.0000 24.0000
70.5333 9.0000 24.0000
70.4667 6.0000 24.0000
70.4667 4.0000 25.0000
70.4667 4.0000 19.0000
70.4000 4.0000 30.0000
70.3333 1.0000 23.0000
70.0667 17.0000 24.0000
70.0667 1.0000 24.0000
70.0000 16.0000 24.0000
69.9333 4.0000 9.0000
69.8667 4.0000 20.0000
69.8667 5.0000 7.0000
69.8667 4.0000 7.0000
69.8000 15.0000 24.0000
69.8000 1.0000 21.0000

Table [2.4] Results of pairwise combinations of features

4 15
24 26
4 17
S 3

23 24
24 30
20 24
24 27
24 25
4 26
1 10
9 24
10 24
5 11
17 24
4 27
16 24
8 18
10 21
5 7

Table [3]. 20 combinations of 2 features selected to combine in sets of 3

Percentage of correct classification for 30 best combinations in set 1

Percent correct | Feature 1 Feature 2 Feature 3
79.4000 10.0000 21.0000 26.0000
77.6000 5.0000 7.0000 23.0000
77.6000 5.0000 23.0000 11.0000
77.4000 5.0000 23.0000 21.0000
76.4000 16.0000 24.0000 18.0000
76.4000 5.0000 23.0000 19.0000
75.8000 23.0000 24.0000 19.0000
75.8000 23.0000 24.0000 15.0000
75.8000 5.0000 23.0000 7.0000
75.6000 5.0000 7.0000 22.0000
75.6000 5.0000 7.0000 21.0000
75.6000 5.0000 7.0000 16.0000
75.4000 5.0000 7.0000 14.0000
75.4000 5.0000 11.0000 10.0000
75.2000 10.0000 21.0000 19.0000
75.2000 8.0000 18.0000 6.0000
75.2000 5.0000 23.0000 2.0000
75.0000 10.0000 21.0000 16.0000
75.0000 10.0000 21.0000 8.0000
75.0000 5.0000 11.0000 18.0000
75.0000 4.0000 26.0000 14.0000
75.0000 5.0000 23.0000 29.0000
75.0000 5.0000 23.0000 25.0000
74.8000 10.0000 21.0000 9.0000
74.6000 10.0000 21.0000 12.0000
74.6000 5.0000 11.0000 23.0000
74.6000 10.0000 24.0000 9.0000
74.6000 5.0000 23.0000 10.0000
74.6000 5.0000 23.0000 9.0000
74.4000 5.0000 7.0000 19.0000

Table [4.1] Results of combinations of 3 features

Percentage of correct classification for 30 best combinations in set 2

Percent correct | Feature 1 Feature 2 Feature 3

79.8000 20.0000 24.0000 12.0000
78.6000 24.0000 30.0000 19.0000
78.6000 4.0000 15.0000 28.0000
78.0000 24.0000 27.0000 19.0000
77.8000 4.0000 17.0000 19.0000
77.6000 8.0000 18.0000 4.0000
77.4000 4.0000 27.0000 19.0000
77.4000 5.0000 23.0000 21.0000
77.2000 5.0000 23.0000 29.0000
77.2000 4.0000 15.0000 27.0000
77.0000 4.0000 27.0000 18.0000
77.0000 4.0000 15.0000 21.0000
76.6000 5.0000 7.0000 23.0000
76.6000 20.0000 24.0000 3.0000
76.4000 16.0000 24.0000 30.0000
76.4000 4.0000 27.0000 25.0000
76.4000 24.0000 27.0000 10.0000
76.4000 23.0000 24.0000 30.0000
76.2000 5.0000 23.0000 3.0000
76.2000 4.0000 17.0000 2.0000
76.2000 4.0000 15.0000 26.0000
75.8000 5.0000 7.0000 15.0000
75.8000 24.0000 30.0000 4.0000
75.8000 5.0000 23.0000 28.0000
75.6000 4.0000 27.0000 15.0000
75.6000 24.0000 27.0000 26.0000
75.6000 24.0000 27.0000 1.0000
75.6000 20.0000 24,0000 25.0000
75.6000 24.0000 30.0000 16.0000
75.4000 4.0000 15.0000 8.0000

Table [4.2] Results of combinations of 3 features

Appendices

Appendix A:
Tables

No. | feature Description Channel Method
1 10mean mean GSR i
2 10curve curve length GSR 2
3 10med_dif median of the derivative GSR 1
4 10max_min minimum subtracted from the maximum GSR 2
5 10max maximum of the signal GSR 1
6 10mdif mean of derivative GSR 3
7 20curve curve length High Cardio 1
8 20ampcard amplitude of the peaks High Cardio 1
9 20max min minimum subtracted from the maximum High Cardio 4
10 | 20max maximum of the signal High Cardio 4
11 20min minimum of the signal High Cardio 1
12 30med dif median of the derivative Low Cardio 3
13 30max maximum of the signal Low Cardio 1
14 40mean mean Derivative of Low Cardio 1
15 40max maximum of the signal Derivative of Low Cardio 1
16 50curve curve length Lower Respiratory 6
17 50ampr amplitude of the peaks Lower Respiratory 2
18 50peaknumr number of the peaks Lower Respiratory 5
19 50ie inhalation divided by exhalation Lower Respiratory 5
20 50max min minimum subtracted from the maximum Lower Respiratory 2
21 50max maximum of the signal Lower Respiratory 6
22 60max_min minimum subtracted from the maximum Upper Respiratory 2
23 60max maximum Upper Respiratory 3
24 10std standard deviation GSR 2
25 20std standard deviation High Cardio 1
26 50std standard deviation Upper Respiratory 6
27 20armod1 auto regressive parameter High Cardio 7
28 26psdcohl max cross spectral density High Cardio, Lower Respiratory 1
29 10isd1 frequency of maximum integrated spectral GSR 1*
difference of control-relevant pair
30 20isd1 area under integrated spectral difference High Cardio 3*

Methods: 1=Difference of Averages, 2=Normalized Average, 3=Max-Max, 4=Min-Min,
5=Max-Min, 6=Min-Max, 7=Max/Min , 1*=Average of relevant-control pairs, 3*=Max of relevant-

control pair.

Table 1. Selected Features

Percentage of correct classification for 30 best combinations in set 1

Percent correct Feature 1 | Feature 2
74.2000 8.0000 18.0000
74.0000 10.0000 21.0000
73.0000 5.0000 7.0000
72.0000 24.0000 26.0000
71.8000 23.0000 24.0000
71.6000 4.0000 26.0000
70.4000 25.0000 26.0000
70.4000 18.0000 25.0000
70.2000 24.0000 27.0000
70.2000 9.0000 21.0000
70.0000 5.0000 27.0000
69.6000 11.0000 21.0000
69.6000 9.0000 24.0000
69.4000 11.0000 27.0000
69.4000 5.0000 26.0000
69.2000 8.0000 19.0000
69.2000 5.0000 18.0000
69.0000 25.0000 27.0000
69.0000 9.0000 18.0000
69.0000 5.0000 23.0000
68.8000 24.0000 30.0000
68.8000 18.0000 20.0000
68.8000 17.0000 20.0000
68.8000 4.0000 15.0000
68.6000 22.0000 24.0000
68.4000 6.0000 24.0000
68.4000 1.0000 27.0000
68.2000 15.0000 24.0000
68.2000 9.0000 26.0000
68.2000 5.0000 19.0000

Table [2.1] Results of pairwise combinations of features

Percentage of correct classification for 30 best combinations in set 2

Percent correct | Feature 1 Feature 2
74.4000 5.0000 23.0000
74.4000 4.0000 27.0000
74.2000 4.0000 15.0000
74.0000 20.0000 24.0000
73.6000 16.0000 24.0000
73.2000 3.0000 27.0000
72.8000 27.0000 30.0000
72.6000 4.0000 30.0000
72.6000 4.0000 7.0000
72.4000 5.0000 25.0000
72.2000 24.0000 30.0000
72.2000 8.0000 27.0000
72.2000 4.0000 17.0000
72.2000 4.0000 16.0000
72.0000 24.0000 27.0000
72.0000 24.0000 25.0000
72.0000 4.0000 20.0000
71.8000 7.0000 23.0000
71.8000 4.0000 10.0000
71.2000 25.0000 27.0000
70.8000 24.0000 26.0000
70.8000 8.0000 22.0000
70.6000 7.0000 27.0000
70.6000 6.0000 27.0000
70.4000 14.0000 21.0000
70.4000 14.0000 20.0000
70.4000 4.0000 8.0000
70.2000 4.0000 24.0000
70.0000 22.0000 27.0000
70.0000 17.0000 24.0000

Table [2.2] Results of pairwise combinations of features

Percentage of correct classification for 30 best combinations in set 3

Percent correct | Feature 1 Feature 2
81.0000 1.0000 10.0000
80.6000 9.0000 24.0000
80.4000 10.0000 24.0000
80.4000 4.0000 25.0000
80.2000 4.0000 9.0000
79.8000 5.0000 11.0000
79.2000 17.0000 24.0000
79.2000 1.0000 21.0000
79.2000 1.0000 8.0000
79.0000 1.0000) 24.0000
79.0000 1.0000 11.0000
78.8000 4.0000 11.0000
78.6000 4.0000 17.0000
78.2000 24.0000 25.0000
78.2000 1.0000 14.0000
78.0000 1.0000 23.0000
78.0000 1.0000 20.0000
77.8000 23.0000 24.0000
77.8000 1.0000 5.0000
77.6000 19.0000 24.0000
77.4000 11.0000 24.0000
77.4000 5.0000 18.0000
77.2000 4.0000 19.0000
77.0000 4.0000 18.0000
76.8000 4.0000 15.0000
76.6000 5.0000 13.0000
76.6000 4.0000 24.0000
76.2000 4.0000 5.0000
76.2000 1.0000 26.0000

Table [2.3] Results of pairwise combinations of features

Percentage of correct classification for 30 best combinations in average

Percent correct | Feature 1 Feature 2
73.2667 4.0000 15.0000
72.8000 24.0000 26.0000
72.6667 4.0000 17.0000
72.6000 5.0000 23.0000
72.2667 23.0000 24.0000
72.0667 24.0000 30.0000
71.9333 20.0000 24.0000
71.8667 24.0000 27.0000
71.4667 24.0000 25.0000
71.4000 4.0000 26.0000
71.0667 4.0000 10.0000
70.9333 1.0000 8.0000
70.9333 4.0000 23.0000
70.6000 5.0000 11.0000
70.6000 4.0000 24.0000
70.5333 9.0000 24.0000
70.4667 6.0000 24.0000
70.4667 4.0000 25.0000
70.4667 4.0000 19.0000
70.4000 4.0000 30.0000
70.3333 1.0000 23.0000
70.0667 17.0000 24.0000
70.0667 1.0000 24.0000
70.0000 16.0000 24.0000
69.9333 4.0000 9.0000
69.8667 4.0000 20.0000
69.8667 5.0000 7.0000
69.8667 4.0000 7.0000
69.8000 15.0000 24.0000
69.8000 1.0000 21.0000

Table [2.4] Results of pairwise combinations of features

4 15
24 26
4 17
5 3

23 24
24 30
20 24
24 27
24 25
4 26
1 10
9 24
10 24
S 11
17 24
4 27
16 24
8 18
10 21
5 7

Table [3]. 20 combinations of 2 features selected to combine in sets of 3

Percentage of correct classification for 30 best combinations in se. s

Percent correct | Feature 1 Feature 2 Feature 3
79.4000 10.0000 21.0000 26.0000
77.6000 5.0000 7.0000 23.0000
77.6000 5.0000 23.0000 11.0000
77.4000 5.0000 23.0000 21.0000
76.4000 16.0000 24.0000 18.0000
76.4000 5.0000 23.0000 19.0000
75.8000 23.0000 24.0000 19.0000
75.8000 23.0000 24.0000 15.0000
75.8000 5.0000 23.0000 7.0000
75.6000 5.0000 7.0000 22.0000
75.6000 5.0000 7.0000 21.0000
75.6000 5.0000 7.0000 16.0000
75.4000 5.0000 7.0000 14.0000
75.4000 5.0000 11.0000 10.0000
75.2000 10.0000 21.0000 19.0000
75.2000 8.0000 18.0000 6.0000
75.2000 5.0000 23.0000 2.0000
75.0000 10.0000 21.0000 16.0000
75.0000 10.0000 21.0000 8.0000
75.0000 5.0000 11.0000 18.0000
75.0000 4.0000 26.0000 14.0000
75.0000 5.0000 23.0000 29.0000
75.0000 5.0000 23.0000 25.0000
74.8000 10.0000 21.0000 9.0000
74.6000 10.0000 21.0000 12.0000
74.6000 5.0000 11.0000 23.0000
74.6000 10.0000 24.0000 9.0000
74.6000 5.0000 23.0000 10.0000
74.6000 5.0000 23.0000 9.0000
74.4000 5.0000 7.0000 19.0000

Table [4.1] Results of combinations of 3 features

Percentage of correct classification for 30 best combinations in set 2

Percent correct | Feature 1 Feature 2 Feature 3

79.8000 20.0000 24.0000 12.0000 .
78.6000 24.0000 30.0000 19.0000
78.6000 4.0000 15.0000 28.0000
78.0000 24.0000 27.0000 19.0000
77.8000 4.0000 17.0000 19.0000
77.6000 8.0000 18.0000 4.0000
77.4000 4.0000 27.0000 19.0000
77.4000 5.0000 23.0000 21.0000
77.2000 5.0000 23.0000 29.0000
77.2000 4.0000 15.0000 27.0000
77.0000 4.0000 27.0000 18.0000
77.0000 4.0000 15.0000 21.0000
76.6000 5.0000 7.0000 23.0000
76.6000 20.0000 24.0000 3.0000
76.4000 16.0000 24.0000 30.0000
76.4000 4.0000 27.0000 25.0000
76.4000 24.0000 27.0000 10.0000
76.4000 23.0000 24.0000 30.0000 -
76.2000 5.0000 23.0000 3.0000
76.2000 4.0000 17.0000 2.0000
76.2000 4.0000 15.0000 26.0000
75.8000 5.0000 7.0000 15.0000
75.8000 24.0000 30.0000 4.0000
75.8000 5.0000 23.0000 28.0000
75.6000 4.0000 27.0000 15.0000
75.6000 24.0000 27.0000 26.0000
75.6000 24.0000 27.0000 1.0000
75.6000 20.0000 24.0000 25.0000
75.6000 24.0000 30.0000 16.0000
75.4000 4.0000 15.0000 8.0000

Table [4.2] Results of combinations of 3 features

Percentage of correct classification for 30 best combinations in set 3

Percent correct | Feature 1 Feature 2 Feature 3

85.2000 9.0000 24.0000 19.0000
85.0000 9.0000 24.0000 22.0000
84.2000 16.0000 24.0000 19.0000
84.0000 17.0000 24.0000 9.0000
84.0000 4.0000 26.0000 17.0000
83.6000 4.0000 26.0000 11.0000
83.6000 4.0000 17.0000 9.0000
83.6000 24.0000 26.0000 17.0000
83.6000 4.0000 15.0000 9.0000
83.4000 5.0000 11.0000 24.0000
83.4000 9.0000 24.0000 21.0000
83.4000 9.0000 24.0000 17.0000
83.4000 9.0000 24.0000 14.0000
83.4000 4.0000 26.0000 9.0000
83.2000 16.0000 24.0000 1.0000
83.2000 4.0000 17.0000 26.0000
83.2000 24.0000 26.0000 9.0000
83.0000 9.0000 24.0000 12.0000
83.0000 9.0000 24.0000 6.0000
83.0000 4.0000 17.0000 11.0000
82.8000 9.0000 24.0000 18.0000
82.8000 23.0000 24.0000 1.0000
82.8000 4.0000 17.0000 24.0000
82.8000 4.0000 17.0000 8.0000
82.6000 17.0000 24.0000 19.0000
82.4000 17.0000 24.0000 8.0000
82.4000 9.0000 24.0000 2.0000
82.4000 5.0000 23.0000 29.0000
82.2000 5.0000 23.0000 10.0000
82.0000 9.0000 24.0000 26.0000

Table [4.3] Results of combinations of 3 features

11

Percentage of correct classification for 30 best combinations on average

Percent correct | Feature 1 Feature 2 Feature 3
78.2000 5.0000 23.0000 29.0000
77.6000 5.0000 7.0000 23.0000
77.3333 5.0000 23.0000 21.0000
76.6000 5.0000 23.0000 10.0000
76.0000 23.0000 24.0000 15.0000
75.8667 5.0000 7.0000 21.0000
75.8667 5.0000 23.0000 7.0000
75.6667 5.0000 23.0000 11.0000
75.6000 8.0000 18.0000 4.0000
75.5333 4.0000 17.0000 19.0000
75.5333 5.0000 11.0000 17.0000
75.5333 24.0000 26.0000 14.0000
75.4667 5.0000 23.0000 28.0000
75.4667 4.0000 15.0000 26.0000
75.3333 17.0000 24.0000 19.0000
75.3333 5.0000 23.0000 25.0000
75.2000 5.0000 7.0000 17.0000
75.2000 4.0000 15.0000 23.0000
75.0000 5.0000 23.0000 17.0000
74.9333 5.0000 23.0000 3.0000
74 8667 4.0000 26.0000 15.0000
74.8000 23.0000 24.0000 19.0000
74.8000 5.0000 23.0000 14.0000
74.8000 5.0000 23.0000 1.0000
74.8000 24.0000 26.0000 25.0000 -
74.7333 24.0000 30.0000 19.0000
74.7333 5.0000 23.0000 19.0000
74,7333 5.0000 23.0000 9.0000
74.6667 5.0000 7.0000 22.0000

74.6667 4.0000 26.0000 19.0000

Table [4.4] Results of combinations of 3 features

4 17 26
5 23 29
9 19 24
4 5 9

5 10 23
5 21 23
4 8 18
19 24 30
3 7 23
19 23 24
9 14 24
4 15 28
5 11 17
4 19 17
S 23 24
5 7 21
5 11 23
14 24 26
10 21 26
4 11 26

Table [5]. 20 combinations of 3 features selected to combine in sets of 4

13

Percentage of correct classification for 30 best combinations in set 1

Percent correct | Featurel Feature 2 Feature 3 Feature 4
81.0000 5.0000 21.0000 23.0000 9.0000
80.6000 5.0000 7.0000 23.0000 6.0000
80.2000 5.0000 21.0000 23.0000 11.0000
79.6000 5.0000 21.0000 23.0000 10.0000
79.4000 5.0000 7.0000 23.0000 12.0000
79.4000 5.0000 10.0000 23.0000 21.0000
79.0000 5.0000 7.0000 23.0000 28.0000
79.0000 5.0000 7.0000 23.0000 19.0000
79.0000 5.0000 21.0000 23.0000 26.0000
78.8000 5.0000 11.0000 23.0000 7.0000
78.6000 5.0000 21.0000 23.0000 12.0000
78.4000 5.0000 21.0000 23.0000 15.0000
78.4000 5.0000 10.0000 23.0000 8.0000
78.0000 5.0000 11.0000 23.0000 21.0000
78.0000 5.0000 7.0000 23.0000 20.0000
78.0000 5.0000 7.0000 23.0000 14.0000
77.8000 5.0000 7.0000 23.0000 2.0000
77.8000 5.0000 21.0000 23.0000 28.0000
77.8000 5.0000 21.0000 23.0000 6.0000
77.8000 5.0000 21.0000 23.0000 3.0000
77.8000 5.0000 23.0000 29.0000 26.0000
77.8000 5.0000 23.0000 29.0000 22.0000
77.6000 10.0000 21.0000 26.0000 2.0000
77.6000 5.0000 7.0000 23.0000 22.0000
77.6000 5.0000 10.0000 23.0000 19.0000
77.6000 5.0000 23.0000 29.0000 19.0000
77.6000 5.0000 23.0000 29.0000 - 1.0000
77.4000 10.0000 21.0000 26.0000 9.0000
77.4000 5.0000 11.0000 23.0000 10.0000
77.4000 5.0000 11.0000 23.0000 8.0000

Table [6.1] Results of combinations of 4 features

14

Percentage of correct classification for 30 best combinations in set 2

Percent correct | Feature 1 Feature 2 Feature 3 Feature 4
81.0000 5.0000 23.0000 29.0000 14.0000
79.8000 5.0000 10.0000 23.0000 21.0000
79.6000 5.0000 21.0000 23.0000 11.0000
79.4000 14.0000 24.0000 26.0000 19.0000
79.4000 5.0000 21.0000 23.0000 9.0000
79.2000 5.0000 21.0000 23.0000 13.0000
79.0000 5.0000 11.0000 23.0000 3.0000
79.0000 5.0000 23.0000 29.0000 21.0000
78.8000 5.0000 23.0000 29.0000 6.0000
78.6000 4.0000 19.0000 17.0000 25.0000
78.6000 5.0000 21.0000 23.0000 10.0000
78.4000 4.0000 19.0000 17.0000 6.0000
78.4000 5.0000 23.0000 29.0000 19.0000
78.2000 5.0000 11.0000 23.0000 25.0000
78.2000 5.0000 11.0000 23.0000 6.0000
78.2000 4.0000 15.0000 28.0000 27.0000
78.2000 5.0000 7.0000 23.0000 11.0000
78.2000 19.0000 24.0000 30.0000 11.0000
78.0000 5.0000 21.0000 23.0000 - 27.0000
77.8000 19.0000 24.0000 30.0000 23.0000
77.8000 19.0000 24,0000 30.0000 16.0000
77.8000 5.0000 10.0000 23.0000 11.0000
77.6000 4.0000 19.0000 17.0000 3.0000
77.6000 5.0000 7.0000 23.0000 28.0000
77.4000 14.0000 24.0000 26.0000 20.0000
77.4000 5.0000 21.0000 23.0000 30.0000
77.2000 5.0000 11.0000 23.0000 8.0000
77.2000 4.0000 19.0000 17.0000 11.0000
77.2000 5.0000 7.0000 23.0000 26.0000
77.2000 5.0000 21.0000 23.0000 12.0000

Table [6.2] Results of combinations of 4 features

15

Percentage of correct classification for 30 best combinations in set 3

Percent correct | Feature 1 Feature 2 Feature 3 Feature 4
87.4000 9.0000 19.0000 24.0000 14.0000
87.2000 9.0000 14.0000 24.0000 19.0000
87.0000 9.0000 19.0000 24.0000 11.0000
86.8000 9.0000 19.0000 24.0000 18.0000
86.6000 5.0000 21.0000 23.0000 29.0000
86.6000 9.0000 19.0000 24.0000 16.0000
86.4000 9.0000 19.0000 24.0000 21.0000
86.4000 4.0000 17.0000 26.0000 18.0000
86.2000 4.0000 11.0000 26.0000 24.0000
86.2000 4.0000 8.0000 18.0000 9.0000
86.2000 9.0000 19.0000 24.0000 22.0000
86.2000 9.0000 19.0000 24.0000 6.0000
86.0000 9.0000 19.0000 24.0000 12.0000
86.0000 9.0000 19.0000 24.0000 10.0000
85.8000 9.0000 19.0000 24.0000 26.0000
85.8000 4.0000 17.0000 26.0000 9.0000
85.6000 5.0000 7.0000 21.0000 16.0000
85.6000 5.0000 7.0000 21.0000 8.0000
85.6000 9.0000 19.0000 24.0000 8.0000
85.6000 9.0000 19.0000 24.0000 5.0000
85.6000 9.0000 19.0000 24.0000 1.0000
85.4000 9.0000 14.0000 24.0000 4.0000
85.4000 5.0000 21.0000 23.0000 1.0000
85.2000 4.0000 19.0000 17.0000 10.0000
85.2000 9.0000 19.0000 24.0000 4.0000
85.0000 5.0000 11.0000 17.0000 4.0000
85.0000 9.0000 19.0000 24.0000 2.0000
85.0000 4.0000 17.0000 26.0000 8.0000
84.8000 4.0000 11.0000 26.0000 9.0000
84,8000 5.0000 21.0000 23.0000 22.0000

Table [6.3] Results of combinations of 4 features

16

Percentage of correct classification for 30 best combinations on average

Percent correct | Feature 1 Feature 2 Feature 3 Feature 4
81.0667 5.0000 21.0000 23.0000 9.0000
79.9333 5.0000 23.0000 29.0000 21.0000
79.8667 5.0000 21.0000 23.0000 11.0000
79.6000 5.0000 10.0000 23.0000 21.0000
79.2667 5.0000 23.0000 29.0000 19.0000
79.1333 5.0000 21.0000 23.0000 10.0000
79.0667 5.0000 23.0000 29.0000 14.0000
79.0000 14.0000 24.0000 26.0000 19.0000
78.9333 5.0000 7.0000 23.0000 12.0000
78.8667 5.0000 21.0000 23.0000 22.0000
78.8667 5.0000 7.0000 23.0000 28.0000
78.7333 5.0000 7.0000 23.0000 6.0000
78.6667 5.0000 21.0000 23.0000 7.0000
78.5333 5.0000 21.0000 23.0000 1.0000
78.4667 5.0000 23.0000 29.0000 1.0000
78.4000 5.0000 7.0000 21.0000 8.0000
78.4000 5.0000 7.0000 23.0000 26.0000
78.2667 5.0000 7.0000 23.0000 11.0000
78.2000 5.0000 7.0000 23.0000 22.0000
78.2000 5.0000 23.0000 29.0000 28.0000
78.1333 5.0000 11.0000 23.0000 10.0000
78.1333 5.0000 10.0000 23.0000 25.0000
78.0667 5.0000 7.0000 23.0000 16.0000
78.0000 5.0000 7.0000 23.0000 20.0000
77.8667 5.0000 10.0000 23.0000 29.0000

Table [6.4] Results of combinations of 4 features

k Correct Performance
classification | Index

1 73 0.5196
2 74 0.5099
3 77 0.4796
4 77 0.4796
5 82 0.42

6 81 0.4359
7 76 0.4899
8 80 0.4472
9 79 0.4583
10 79 0.4583

Table[7.1] Classification results with changing K for the crisp classifier for set 1

k Correct Performance
classification | Index
1 74 0.5099
2 74 0.5099
3 77 0.4796
4 77 0.4796
5 74 0.5099
6 76 0.4899
7 76 0.4899
8 75 0.5000
9 78 0.4690
10 78 0.4690

Table[7.2] Classification results with changing K for the crisp classifier for set 2

18

k Correct Performance Index
classification
1 79 0.4583
2 79 0.4583
3 81 0.4359
4 84 0.4000
5 83 0.4123
6 85 0.3873
7 81 0.4359
8 81 0.4359
9 82 0.4243
10 82 0.4243

Table[7.3] Classification results with changing K for the crisp classifier for set 3

k Correct Performance
classification | Index
1 75.3333 0.4959
2 75.6667 0.4927
3 78.3333 0.4650
4 79.3333 0.4531
5 79.6667 0.4474
6 80.6667 0.4377
7 77.6667 0.4719
8 78.6667 0.4610
9 79.6667 0.4505
10 79.6667 0.4505

Table[7.4] Average classification results with changing K for the crisp classifier

19

percent classification performanc
e index

k\ Threshold [03 |04 |05 |06 (07 |08

1 73 73 73 73 73 73 0.5196
2 77 75 73 74 72 73 0.4267
3 75 74 77 75 73 69 0.4261
4 75 74 76 77 76 69 0.4157
5 74 74 81 79 76 73 0.4061
6 69 74 78 79 76 74 0.3993
7 70 74 77 81 77 72 0.3980
8 70 75 79 79 79 72 0.3977
9 69 72 78 80 79 71 0.3971
10 68 73 78 79 79 70 0.3978

Table[8.1] Classification results for the fuzzy classifier for set 1

percent classification performance
index

k\ Threshold |03 |04 |05 (06 (07 (08

1 74 74 74 74 74 74 0.5099
2 72 75 74 77 78 77 0.4328
3 73 75 79 79 77 73 0.4316
4 73 75 79 76 76 72 0.4262
5 71 76 76 78 77 74 0.4176
6 72 73 76 79 75 72 0.4164
7 71 73 79 79 77 70 0.4092
8 69 74 78 80 77 70 0.4099
9 73 75 80 79 77 70 0.4059
10 72 73 81 79 76 72 0.4004

Table[8.2] Classification results for the fuzzy classifier for set 2

20

percent classification performance
index
k\ Threshold |03 |04 {05 |06 [07 |08 '
1 79 79 79 79 79 79 0.4583
2 73 76 79 84 84 84 0.3991
3 72 75 81 85 85 82 0.3862
4 75 78 84 86 86 83 0.3704
5 74 80 83 86 86 |84 [03635
6 75 82 85 87 85 83 0.3588
7 74 80 82 84 84 82 |0.3605
8 73 78 83 84 84 |81 0.3638
9 73 79 83 84 85 81 0.3625
10 73 80 83 84 85 82 0.3615

Table[8.3] Classification results for the fuzzy classifier for set 3

percent classification performanc
e index

k \ Threshold |03 0.4 0.5 0.6 0.7 0.8

1 75.33 | 7533 | 7533 {7533 |75.33 75.33 |0.4959
2 74 7533 |7533 {7833 |78 78 0.4195
3 73.33 {7467 {79 79.67 | 78.33 74.67 | 0.4146
4 7433 | 75.67 [79.67 [79.67 |7933 |[74.67 |0.4041
5 73 76.67 | 80 81 79.67 |77 0.3957
6 72 7633 |79.67 |81.67 |78.67 [7633 |0.3915
7 71.67 | 7567 }7933 |8133 7933 74.67 | 0.3892
8 70.67 | 75.67 | 80 81 80 74.33 | 0.3905
9 71.67 {7533 |80.33 |81 80.33 74 0.3885
10 71 75.33 | 80.67 |80.67 |80 74.67 | 0.3866

Tablé[8.3] Average classification results with for the fuzzy classifier

21

File Membership Defuzzified Result
1.0000 0.2736 0
2.0000 0.3339 0
3.0000 0.5397 0 0
4.0000 0.5450 0
5.0000 0.7423 1.0000
6.0000 0.1732 0 0
7.0000 0.8901 1.0000
8.0000 1.0000 1.0000 1 Misclassified
9.0000 0.5376 0
10.0000 0.1742 0
11.0000 0.4366 0 0
12.0000 0.3458 0
13.0000 0.5145 0
14.0000 0.5178 0 0
15.0000 0.1016 0
16.0000 0 0
17.0000 0 0 0
18.0000 0.1334 0 0
19.0000 0 0
20.0000 0 0
21.0000 0.2923 0 0
22.0000 0 0
23.0000 0 0
24.0000 0.1607 0 0
25.0000 0 0
26.0000 0.4421 0
27.0000 1.0000 1.0000 0
28.0000 0.3307 0
29.0000 0.0583 0
30.0000 0.4965 0 0
31.0000 0.3505 0
32.0000 0.1181 0
33.0000 0.2101 0 0

Table [9.1] Classification of the files of set 1

22

File Membership Defuzzified Result
34.0000 0.5970 0

35.0000 0 0

36.0000 0.1193 0 0
37.0000 0.3174 0

38.0000 0.8117 1.0000

39.0000 0.0997 0 0
40.0000 0.1889 0

41.0000 0.4215 0

42.0000 0.1635 0 0
43.0000 0.6474 1.0000

44.0000 0 0

45.0000 0.5495 0 0
46.0000 0.1115 0 0
47.0000 0 0

48.0000 0.3986 0

49.0000 0 0

50.0000 0 0 0
51.0000 0.6709 1.0000

52.0000 1.0000 1.0000

53.0000 0.5297 0 1
54.0000 0.7245 1.0000

55.0000 0.9200 1.0000

56.0000 1.0000 1.0000 1
57.0000 0.9105 1.0000

58.0000 0.9398 1.0000

59.0000 0.5657 0 1
60.0000 0.8968 1.0000

61.0000 1.0000 1.0000

62.0000 0.2793 0

63.0000 0.1088 0 0 Misclassified
64.0000 0.6245 1.0000

65.0000 0.8643 1.0000

66.0000 0.5054 0 1

Table [9.1] Continued

23

File Membership Defuzzified Result
67.0000 0.8498 1.0000

68.0000 0.6969 1.0000

69.0000 0.8397 1.0000 1
70.0000 0.2901 0

71.0000 0.8291 1.0000

72.0000 0.3982 0 0 Misclassified
73.0000 1.0000 1.0000

74.0000 0.2463 0

75.0000 0.8043 1.0000 1
76.0000 0.6676 1.0000

77.0000 1.0000 1.0000

78.0000 1.0000 1.0000 1
79.0000 1.0000 1.0000

80.0000 0.7538 1.0000

81.0000 1.0000 1.0000 1
82.0000 1.0000 1.0000

83.0000 0.8378 1.0000

84.0000 1.0000 1.0000 1
85.0000 0.8926 1.0000

86.0000 0.5448 0

87.0000 0.5751 0 0 Misclassified
88.0000 0.8273 1.0000

89.0000 0.2945 0

90.0000 0.9110 1.0000 1
91.0000 1.0000 1.0000

92.0000 1.0000 1.0000

93.0000 0 0 1
94.0000 0.2887 0

95.0000 0.2079 0

96.0000 0.5793 0 0 Misclassified
97.0000 1.0000 1.0000

98.0000 0.7971 1.0000

99.0000 0.8708 1.0000 1
100.0000 1.0000 1.0000 1

Table [9.1] Continued

24

File Membership Defuzzified Result
1.0000 0.2579 0

2.0000 0.1307 0

3.0000 0 0 0
4.0000 0.2652 0

5.0000 0.4345 0

6.0000 0.1175 0 0
7.0000 1.0000 1.0000

8.0000 0.7086 1.0000 1 Misclassified
§.0000 0.2856 0

10.0000 0.2745 0

11.0000 0.3056 0 0
12.0000 0.2720 0

13.0000 0.5019 0

14.0000 0.8871 1.0000 0
15.0000 0.0912 0

16.0000 0 0

17.0000 0 0 0
18.0000 0.8334 1.0000 1 Misclassified
19.0000 0 0

20.0000 0 0
21.0000 0.5483 0 0
22.0000 0 0
23.0000 0 0
24.0000 0.1535 0 0
25.0000 0.4955 0

26.0000 0.1013 0
27.0000 1.0000 1.0000 0
28.0000 0.3788 0
29.0000 0.1638 0

30.0000 0.0905 0 0
31.0000 0 0

32.0000 0.1431 0
33.0000 0.0937 0 0

Table [9.2] Classification of the files of set 2

25

File Membership Defuzzified Result
34.0000 0 0

35.0000 0 0

36.0000 0.1281 0 0
37.0000 0.3690 0

38.0000 0.5734 0

39.0000 0.1569 0 0
40.0000 0.3659 0

41.0000 0.4124 0

42.0000 0.1704 0 0
43.0000 0.4251 0

44.0000 0.0664 0

45.0000 0.5356 0 0
46.0000 0.5084 0 0
47.0000 0.1735 0

48.0000 0.7512 1.0000

49.0000 0.5115 0

50.0000 0.0976 0 0
51.0000 0.6361 1.0000

52.0000 0.8482 1.0000 1
53.0000 0.3471 0

54.0000 0.8822 1.0000

55.0000 1.0000 1.0000 1
56.0000 1.0000 1.0000

57.0000 1.0000 1.0000

58.0000 0.8730 1.0000 1
59.0000 0 0

60.0000 0.0389 0

61.0000 0.3643 0 0 Misclassified
62.0000 1.0000 1.0000

63.0000 0.8174 1.0000

64.0000 0.8875 1.0000 1
65.0000 0.7995 1.0000

66.0000 0.5919 0

67.0000 0.7533 1.0000 1

Table [9.2] Continued

26

File Membership Defuzzified Result
68.0000 0.7337 1.0000 '

69.0000 0.8524 1.0000

70.0000 0.8602 1.0000 1

71.0000 0.2217 0

72.0000 1.0000 1.0000

73.0000 0.1268 0 0 Misclassified
74.0000 0.8860 1.0000

75.0000 0.2121 0

76.0000 0.1684 0

77.0000 0.6903 1.0000 0 Misclassified

78.0000 0.7680 1.0000

79.0000 0.8735 1.0000

80.0000 0.8013 1.0000 1

81.0000 0.1748 0

82.0000 0.5428 0

83.0000 0.8496 1.0000 0 Misclassified
84.0000 0.3444 0

85.0000 0.8298 1.0000

86.0000 0.8590 1.0000 1

87.0000 0.6879 1.0000

88.0000 0.9082 1.0000

89.0000 0.6653 1.0000 1

90.0000 0.1636 0

91.0000 0.8754 1.0000

92.0000 0.8594 1.0000 1

93.0000 0.5185 0

94.0000 0.4932 0

95.0000 0.7802 1.0000 0 Misclassified

96.0000 0.8684 1.0000

97.0000 0.8788 1.0000

98.0000 1.0000 1.0000 1
99.0000 1.0000 1.0000
100.0000 0.8669 1.0000 1

Table [9.2] Continued

File Membership Defuzzified Result
1.0000 0.3986 0
2.0000 0.2845 0
3.0000 0.2562 0 0
4.0000 0.2786 0
5.0000 0.3226 0
6.0000 0 0 0
7.0000 1.0000 1.0000
8.0000 0.5055 0
9.0000 0.1434 0 0
10.0000 0 0
11.0000 0 0 0
12.0000 0.0691 0
13.0000 0.4744 0
14.0000 0.4708 0 0
15.0000 0 0
16.0000 0 0
17.0000 o 0 0
18.0000 0.4623 0 0
19.0000 0 0
20.0000 0 0
21.0000 0.2096 0 0
22.0000 0 0
23.0000 0 0
24.0000 0.0516 0 0
25.0000 0.2885 0
26.0000 0.0981 0
27.0000 0.9336 1.0000 0
28.0000 0.2254 0
29.0000 0.1465 0
30.0000 0.0680 0 0
31.0000 0 0
32.0000 0 0
33.0000 0.0939 0 0

Table [9.3] Classification of the files of set 3

28

File Membership Defuzzified Result
34.0000 0.3917 0

35.0000 0 0

36.0000 0 0 0
37.0000 0.1689 0

38.0000 0.5220 0

39.0000 0 0 0
40.0000 0.0969 0

41.0000 0 0

42.0000 0 0 0
43.0000 0.4810 0

44.0000 0.3154 0

45.0000 0.4552 0 0
46.0000 0.3285 0 0
47.0000 0.3690 0

48.0000 0.5593 0

49.0000 0.3522 0

50.0000 0.2325 0 0
51.0000 1.0000 1.0000

52.0000 0.9052 1.0000

53.0000 0.8115 1.0000 1
54.0000 0.8397 1.0000

55.0000 0.8754 1.0000

56.0000 0.0930 0 1
57.0000 0.8330 1.0000

58.0000 1.0000 1.0000 1
59.0000 1.0000 1.0000

60.0000 1.0000 1.0000

61.0000 1.0000 1.0000 1
62.0000 1.0000 1.0000

63.0000 0.6496 1.0000

64.0000 0.5075 0 1
65.0000 0.0823 0

66.0000 0.7810 1.0000

67.0000 0.2356 0 0 Misclassified

Table [9.3] Continued

29

File Membership Defuzzified Result
68.0000 1.0000 1.0000

69.0000 1.0000 1.0000

70.0000 1.0000 1.0000 1
71.0000 1.0000 1.0000

72.0000 1.0000 1.0000

73.0000 1.0000 1.0000 1
74.0000 1.0000 1.0000

75.0000 1.0000 1.0000

76.0000 1.0000 1.0000 1
77.0000 1.0000 1.0000

78.0000 1.0000 1.0000

79.0000 1.0000 1.0000 1
80.0000 0.6068 1.0000

81.0000 0.9054 1.0000

82.0000 0.4134 0 1
83.0000 1.0000 1.0000

84.0000 0 0

85.0000 0.2914 0 0 Misclassified
86.0000 1.0000 1.0000

87.0000 1.0000 1.0000

88.0000 0.8786 1.0000 1
89.0000 0.9018 1.0000

90.0000 1.0000 1.0000

91.0000 1.0000 1.0000 1
92.0000 1.0000 1.0000

93.0000 0.9135 1.0000

94.0000 0.8292 1.0000 1
95.0000 0.7423 1.0000

96.0000 1.0000 1.0000

97.0000 0.0902 0 1
98.0000 0.2564 0

99.0000 0 0
100.0000 0.4387 0 0 Misclassified

Table [9.3] Continued

30

Non deceptive Deceptive 1 Deceptive 2 Deceptive 3
QQ8R9010.011 QQ4Q1083.011 QQ7LX5Q0.021 QQ8RAJOC.011
QQ8RY0I0N.021 QQ4Q1083.021 QQ7LX5Q0.031 QQ8RAJNC.021
QQ8RY010.031 QQ4Q1083.031 QQ7MN2Y0.011 QQ8RAJOC.031
QQ95LUIT.011 QQ4Q3MDC.011 QQ7MN2Y0.021 QQYEUKVT.011
QQ95LUIT.021 QQ4Q3MDC.021 QQ7MN2Y0.031 QQ9EUKVT.021
QQ95LUIT.031 QQ4Q3MDC.031 QQ7TC5UF.011 QQ9EUKVT.031
QQAURNUS.021 QQ51DE36.011 QQ7TC5UF.021 QQ9100X0.021
QQAURNUS.031 QQ51DE36.021 QQ7TC5UF.031 QQ9100X0.041
QQAV53P6.011 QQ51DE36.041 QQ7TQVER.O11 QQ9SOWSL.011
QQAVS53P6.021 QQ6RQGHS6.011 QQ7TQVER.021 QQ9SOWSL.021
QQAVS53P6.031 QQ6RQGH6.021 QQ7TQVER.031 QQ9SOWSL.031
QQBQ4SHI.011 QQ6RQGH6.031 QQ7TVADC.011 QQ9SQIKS.011
QQBQ4SHI.021 QQ6RQGH6.041 QQ7TVADC.021 QQ9SQIK9.021
QQBQ4SHI.031 QQ6T7110.011 QQ7TVADC.031 QQ9SQIK9.031
QQBSS7WT.011 QQ6T7110.021 QQ7U2T4R.011 QQI9WOB9F.011
QQBSS7WT.021 QQ6T7110.031 QQ7U2T4R.021 QQ9IWOBIF.031
QQBSS7WT.031 QQ6Z591G.011 QQ7U2T4R.031 QQ9WOBIF.041
QQ70XM60.021 QQ62591G.021 QQ7YP7QU.011 QQ9U4FMU.011
QQ7RHORO.011 QQ6Z591G.031 QQ7YP7QU.021 QQ9U4FMU.021
QQ7RHORO.021 QQ7PP9B9.011 QQ7YP7QU.031 QQIU4FMU.031
QQ7RHORO.031 QQ7PP9B9.021 QQ7YZ0J3.011 QQIY_SVF.011
QQ7R51P9.011 QQ7PP9B9.031 QQ7YZ0J3.021 QQ9Y_SVF.021
QQ7R51P9.021 QQ7PDU1X.011 QQ7YZ0J3.031 QQI9Y_SVF.031
QQ7R51P9.031 QQ7PDU1X.021 QQ8_O0DPT.011 QQIYH3QF.011
QQI9TDSP3.011 QQ7PDU1X.031 QQ8_0DPT.021 QQ9YH3QF.021
QQITDSP3.021 QQ7_PIPF.011 QQ8_ODPT.031 QQ9YH3QF.031
QQI9TDSP3.031 QQ7_PIPF.021 QQ8_0DPT.041 QQA2TT4C.011
QQAB0OWOI.011 QQ7_PIPF.031 QQ8_2UQ9%.011 QQA2TT4C.021
QQA80WO0I.021 QQ7_JT70.011 QQ8_2UQ9.021 QQA2TT4C.031
QQAB0WOI.031 QQ7_JT70.021 QQ8_2UQ9.031 QQA3HIRX 011
QQBT2206.011 QQ7_JT70.031 QQ8001G6.011 QQA3HIRX.021
QQBT2206.021 QQ738DYX.011 QQ8001G6.021 QQA3HIRX.031
QQBT2206.031 QQ738DYX.021 QQ8001G6.031 QQA32UTF.011
QQB090_9.011 QQ738DYX.031 QQ8201U9.011 QQA32UTF.021
QQB090_9.021 QQ75ULPY9.011 QQ8201U9.021 QQA32UTF.031
QQB090_9.031 QQ75ULPI9.021 QQ820IU9.031 QQAG6U_IF.011
QQBC7PP6.011 QQ75ULP9.031 QQ82SUTX.011 QQA6U_IF.031
QQBC7PP6.021 QQ79_EYF.011 QQ828UTX.021 QQAG6U_IF.041
QQBC7PP6.031 QQ79_EYF.021 QQ82SUTX.031 QQAM4E3L.011
QQCHCK_0.011 QQ79_EYF.031 QQ860ZNU.011 QQAM4E3L.021
QQCHCK_0.021 QQ7BGDML.011 QQ860ZNU.021 QQAM4E3L.031
QQCHCK_0.031 QQ7BGDML.021 QQ860ZNU.031 QQARF2_X.011
QQCDTKP0.011 QQ7BGDML.031 QQ89U_ZR.011 QQARF2_X.021
QQCDTKP0.031 QQ7ETCS81.011 QQ89U_ZR.021 QQARF2_X.031
QQCDTKP0.041 QQ7ETC81.021 QQ89U_ZR.031 QQAWA38X.011
QQCM5Y56.011 QQ7ETCS81.031 QQ8ATU26.011 QQAWA38X.021
QQCQQT8Y.011 QQ7JAQCS.011 QQ8ATU26.021 QQAWA38X.031
QQCQQT8Y.021 QQ7JAQCS.021 QQ8ATU26.031 QQAYXZGU.011
QQCQQT8Y.031 QQ7JAQCS.031 QQ8FGMVI1.011 QQAYXZGU.021
QQCQQT8Y.041 QQ7LX5Q0.011 QQ8FGMVI.021 QQAYXZGU.031

Table [10] NSA Polygraph files used in sets 1-3.

Note: Each set consists of non-deceptive files and one of the deceptive sets

31

Appendix B:

Program Listings

33

Classify Program

% This is a Matlab program

% This script parses a matrix of polygraph
% vectors into training and testing vectors.
% It then calls the classifier, trains, tests
% and gives results.

c=2 % number of classes

percent_train=.75; % percentage of inputs used for training
features=[1] % features to use

classification=1; % use fuzzy classifier

kk=5; % K in K nearest neighbor

change=1; % Randomize training and testing inputs
repeat=20; % Number of repeatitions

ut=.5, % Upper threshhold for 3 class fuzzy classifier
1t=5; % Lower threshhold for 3 class fuzzy classifier
load set31; % file containing feature matrix

% and vector that indicates whether
% column is truthful or deceptive
Y%classvect; % vector of classes eg. 1 = deceptive
% 0 = truthful vector
featurematrix = featmat; % matrix of features
dimension = size(featurematrix),
columns = dimension(2); % the total number of columns in the feature matrix
number_train = round(percent_train*columns), % number of vectors
% used for training

ur=.5; %upper threshold
continue=1; % to repeat the program
while (continue==1)

apercent_classified=[]; % clear average results
acorrect=[];

acc=[];

firesult=(];

ccresult=[];

ttestclass={];

men=0;

while(men ~=7)
men=menu('Select:','Features', Type',’K','/Random’"...
,'Repeat','% training','Start','Defuzz','Exit'),

if (men==1)
‘enter a vector of the features you want tested (eg. [124]) '

34

features = input(' *); % features being tested
end
if (men==2)
classification=menu('Type:','Fuzzy','Crisp'),
end
if (men==3)
kk = input('enter the "K" in K nearest neighbor ')
end
if (men==4)
change=menu('Selection’,'Random’,'Constant’);
end
if (men==35)
repeat=input('Enter number of repeatitions’)
end
if (men==6)
percent_train=input('Enter percentage of the files used for training, 1 for all-1")
end
if (men==8)
ch=menu('Defuzzification', '3class', "Upper thresh','Lower thresh');
if ch==1, classification=3, end
if ch==2
ut=input(‘enter the upper threshhold'); % lower limit for class 1
end
if ch==3
It=input(‘enter the lower threshhold'); %upper limit for class 0
end
end

if (men==9) break,end
end
if men==9 break,end
number_train = round(percent_train*columns),
acorrect=[]; % vector for the average of correct classification
acc=[]; % vector for the average of performance index

if percent_train == 1 % To repeat nonrandom testing for all the files.
repeat =columns;
end

for trial=1:repeat

featurematrix = featmat(features,’); % creates a feature matrix of the
% the features being tested
if ((change==1) & (percent_train~=1))
[trainvect, testvect] = randvect(number_train,columns),

end;

if percent_train == 1
testvect = trial;
if (trial ==1)

trainvect=2:columns;

35

end
if (trial == columns)
trainvect=1:columns-1;
end
if (trial ~=1 & trial ~=columns)
trainvect = [1:trial-1, trial+1:columns};

end
end
testvect
trainvect
u = featurematrix(;,testvect); % testing matrix
testclass = classvect(1,testvect); % class of each column in testing matrix
p = featurematrix(:,trainvect); % training matrix
t = classvect(l,trainvect); % class of each column in training matrix
if classification == 1 % Fuzzy classifier
% m = input(‘enter the degree of fuzziness "M" (1<=M<=infinfity)")
m=2;
save fdatafilckkmptu
% !fknn %This line invokes the classifier program in a dos window
dos('del foutfile.mat|’) %to make sure that the program actulally works
dos(‘fknn]')
'Now loading the result of the fuzzy classifier’
load foutfile
kk, features
fresult
testclass
if(percent_train==1)
firesult=[ffresult fresult]
ttestclass=[ttestclass testclass];
end
cr =fresult(2,:) > ut % defuzzification of the result
correct = 100*(1-mean(abs(testclass-cr))) % percentage correct classified
cc = [1-testclass; testclass]; % adding a row of complements to ¢
cc=fresult-cc;
'Performance Index='
cc = sqrt(mean(mean(cc . 2)))
end
if classification == 2 % crisp classifier
save cdatafilckkptu
% Icknn %This line invokes the classifier program in a dos window
dos('del foutfile.mat}") %to make sure that the program actulally works
dos('cknn|’)

'Loading the Crisp output file'

36

end

load coutfile

1 1
kk, features

cresult

testclass

if(percent_train==1)
ccresult=[ccresult cresult]
ttestclass=[ttestclass testclass];
end

correct = 100*(1-mean(abs(testclass-cresult))) % percentage correct classified
cc = sqrt(mean(abs(testclass-cresult))) % performance index

if classification == 3 % Fuzzy classifier but defuzzification into 3 classes

%

classes

classes

end

% m = input(‘enter the degree of fuzziness "M" (1<=M<=infinfity)')

m=2;

save fdatafilckkmptu

ifknn %This line invokes the classifier program in a dos window
dos('del foutfile. mat|') %to make sure that the program actulally works
dos(‘fknn[")

‘Now loading the result of the fuzzy classifier'
load foutfile

kk. features
fresult
testclass

if(percent_train==1)
flresult=[ffresult fresult]
ttestclass=[ttestclass testclass];
end
class1=find(fresult(2,:) >ut),
classO=find(fresult(2,:) <It);
class3=find(fresult(2,:) >1t & fresult(2,:) <ut);
percem_classiﬁed=100*((length(class0)+length(classl))/lengm(testclass))
fr=[fresult(;,class1) fresult(:,class0)] % the section that is classified into one of the two

cr=fr(2,:)>ut
tr=[testclass(class1) testclass(class0)] % the section that is classified into one of the two

correct = 100*(1-mean(abs(tr-cr))) % percentage correct classified
cc = [1-tr; tr]; % adding a row of complements to cc
cc=frcc;

'Performance Index="'

cc = sqrt(mean(mean(cc . 2)))

apercent_classified = [apercent_classified percent_classified]
acorrect={acorrect correct]
acc=[acc cc]

37

end % for trial

if classification ==3 % 3 class fuzzy
apercent_classified=mean(apercent_classified)
end

acorrect, mean(acorrect)
acc, mean(acc)

continue=3;
while (continue == 3 | continue==4)
continue=menu('Repeat?’, 'Yes', 'no','Plot’, ‘threshold’);
if(continue==3)
dim=menu('Dimension’, "Two', 'Three')+1;
if(dim==2)

pp=p(.find(1));
plot(pp(1,:),pp(2,),'1+);

title('A clustering of two class data');
hold on

pp=p(.,find(t==0));

plot(pp(1,:), PP(2,2), 'gx");

pp=u(:, find(testclass));
plot(pp(1,:), pp(2,:), 'rt);
pp=u(:,find(testclass==0)),
plot(pp(1,:), pp(2,:), 'gX’);

hold off
end %if(dim==2)

if(dim==3)

pp=p(.find(1));
plot3(pp(1,:),pp(2,), PP(3,2), 'rt');
title('A clustering of two class data');
hold on

pp=p(..find(t==0));

plot3(pp(1,:), pP(2,2), PP(3,1), 'XY);
pp=u(:, find(testclass));
plot3(pp(1,:), PP(2,), PP(3.)), '8t
pp=u(:.find(testclass==0)),
plot3(pp(1,:), pp(2,1), PP(3,2), '8XY);

hold off
end %if(dim==3)

end %if(continue==3)
if (continue==4)

ch=menu('Defuzzification', ‘3class', '‘Upper thresh', Lower thresh'),
if ch==1, classification=3, end

38

if ch==2

ut=input(‘enter the upper threshhold'); % lower limit for class 1
end
if ch==

lt=input('enter the lower threshhold'); %upper limit for class 0
end

if classification==1
cr =ffresult(2,:) > ut % defuzzification of the result
correct = 100*(1-mean(abs(ttestclass—<cr))) % percentage correct classified
cc = [1-ttestclass; ttestclass); % adding a row of complements to ¢
cc=firesult-cc;
'Performance Index="'
cc = sqrt(mean(mean(cc . 2)))

end

if classification==
correct = 100*(1-mean(abs(ttestclass-ccresult))) % percentage correct classified
cc = sqrt(mean(abs(ttestclass-ccresult))) % performance index

end

if classification==3
classl=find(ffresult(2,:) >ut);
classO=find(ffresult(2,:) <lt), .
class3=find(ffresult(2,:) >It & firesult(2,:) <ut);

fr=[ffresult(:,class1) firesult(:,class0)] % the section that is classified into one of
the two classes

cr=fr(2,:)>ut

tr=[ttestclass(classl) ttestclass(class0)] % the section that is classified into one of

the two classes
percent_classified=100*((length(class0)+length(class1))/length(ttestclass))
correct = 100*(1-mean(abs(tr-cr))) % percentage correct classified
cc = [1-tr; tr]; % adding a row of complements to cc
cc=fr=c;
'Performance Index='
cc = sqri(mean(mean(cc . 2)))
end
end

end % while continue == 3 | 4

end % while continue

39

/*

*/

This program implements a K-nearest neighbor classifier.
created by: Shahab Layeghi

created: 8/4/93
last modified: 9/17/93

40

/* The main program opens a matlab data file, reads the training matrix,
classifies each entry in the testing matrix, and writes the result in an
output file. The file that this program gets the information from should be
called "cdatafil. mat". As the name implies it is in matlab file format.
The data in this file should have the following order:

1. A single variable 'C' which is the number of classes.

2. A single variable 'K' which is the parameter 'K' in K-NN Algorithm.

3. A trainig matrix 'P' which contains a set of feature vectors. Each vector
is in a column of the matrix.

4. A classes vector 'T' which contains the classes of the training set

5. An input matrix ‘U’ which contains a set of unclassified feature vectors.

The main program uses the CrispKNN routine to classify each one of the input
vectors and saves the results (the classes that these inputs belong to) in a

file called coutfile.mat. This file is in Matlab format. This file contains

a vector of the classes called:

‘cresult’

This program can be called from dos, or within Matlab by using dos escpae
character '!'. An example Matlab script file that shows how this program can
be used is included in the file "cknntest.m".

*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include <math.h>
#include <conio.h>

#define INPUTFILE "cdatafil. mat"
#define OUTPUTFILE "coutfile.mat"

// Function Prototypes

int CrispKNN(double *Input, double *Samples, double *Lables);

double FindDistance(double *vecl, double *vec2);

double Maxd(double *vec, int *index, int Length);

int FindMax(int *vector, int *count, int Length, int Max),

int loadmat(FILE * fp,int *type, char *pname, int *mrows, int *ncols,
int *imagf, double **preal, double **pimag);

void savemat(FILE *fp, int type, char *pname, int mrows, int ncols,
int imagf, double *preal, double *pimag);

// Global variables, these variables will be set by reading matlab file -----

int classes; /* the number of classes */
int features; /* Number of features in a class */

4]

int KK ; /* K in K-nearest neighbors */
int SampleSize; /* Number of Labled Samples */
int TestSize;

Il
/* */
void main()
{

double *Lables;

double *KP;

double *input;

int ij;

FILE *fp,

char name[20];

int type, imagf,

double *Samples, *isamples, // isamples is for imaginary part of the matrix that is not used in
here.

double *Testdata;
double *result;
fp=fopen(INPUTFILE,"rb");
if(fp) ¢
printf("cannot open the file"),
exit(-1);
}
// read classes from the file
loadmat(fp, &type, name, &i, &j, &imagf, &KP, &isamples);
ifGat=1] j!=1) {
printf("error: You should include classes at the beginning of the file\n"),
exit(-1),
}

classes=*KP,

// read KK from the file

loadmat(fp, &type, name, &i, &j, &imagf, &KP, &isamples),

if(it=1 || j*=1) {
printf("error: You should include K at the beginning of the file\n"),
exit(-1);

}

KK=*KP,

// read the matrix from the datafile.
loadmat(fp, &type, name, &features, &SampleSize, &imagf, &Samples, &isamples),

// reading lables from data file _

loadmat(fp, &type, name, &i, &j, &imagf, &Lables, &isamples),

if(i!=1 |l j!'=SampleSize) {
printf("error: Number of labels is different from the number of samples\n”);
exit(-1);

42

/"

17

}

/*

// read data to be classified from the file

loadmat(fp, &type, name, &i, & TestSize, &imagf, & Testdata, &isamples),

if(i 1= features) { :
printf("error: Training and testing matrices should have the same size"),
exit(-1);

}

/I Allocate space for result vector

result = (double *) malloc(TestSize*sizeof(double));

if(!result)
printf("Error: cannot allocate memory for the result vector”),
exit(-1);

3

for(i=0; i<TestSize; i++) { // for each input

input=Testdata+i*features;
result[i]=CrispKNN(input, Samples, Lables);
printf("class: %Ilf\n", result[i]);

}

fclose(fp);

printf("\n End of classification, Now writing the result in the file");

fp=fopen(OUTPUTFILE, "wb"),
if(!fp) {
printf("Error: Cannot write the file");
getch();
}
savemat(fp, 0, "cresult”, 1, TestSize, 0, result, result);
fclose(fp);

*/

int CrispKNN(double *Input, double *Samples, double *Lables)

{

intij;

int nj, k, nk;
double *distance;
int *index;
double x,y;

distance = (double *) malloc(KK*sizeof(double));

if(!distance) {
printf("Error: Not enough memory for distance vector"),
exit(-1);

}

index = (int *) malloc(KK *sizeof(int));

if(findex) {
printf("Error: Not enough memory for index vector”),
exit(-1);

3

43

for(i=0; i<KK; i++) { // This loop initializes K nearest neighbors to the first K Samples
index[i]=Lables[i]+1;
distance[i]=FindDistance(Input, &Samples[i*features]),
}
for(i=KX; i<SampleSize; i++) { // This is the loop that finds the K nearest Neighbors
x=Maxd(distance, &j, KK),
v=FindDistance(Input, &Samples[i*features]),
if(y < x) { // This sample is closest to the input than the farthest K Neighbors
distance[j]=y;
index[jl=Lables[i]+1;
}

j=FindMax(index, &nj, KK, classes); // Finds the class of maximum occurance

/* In this section it is checked to see if there is a tie. That is if

there are two or more classes with the same number of occureances. If
there is a tie for two classes, the class with the minimum sum of
distances is selected. No action is taken for a tie of more than two
classes. */

for (i=0; i<KK; i++)
if(index{i]==j) index[i]=0;
k=FindMax(index, &nk, KX, classes);

if(nk==nj) { /I If there is a tie.
x=0;
for(i=0; i<KK; i++) {
if(index[i]==0)
x+=distanceli];
}
y=0;

for(i=0; i<KK; i++) {
if(index[i]==k)
y+=distanceli];
}

less than that of class k

}

/*

i ¥
}

free(distance);
free(index);
return j-1;

*/

/* This function returns the Euclidian distance between two vectors */

double FindDistance(double *vecl, double *vec2)

{

intk;
double distance;

if(y<x) //1f sum of the distances to class j is

44

distance = 0;
for(k=0; k<features; k++) {
distance +=(vecl[k]-vec2[k])*(vecl[k]-vec2[k]);

/" distance += pow(vecl[k]-vec2[k] , 2);
}
return distance;

}

/* */

/* This function finds the biggest element of an array. It returns that
value and also returns the index to that element in index.
*/

double Maxd(double *vec, int *index, int Length)

{
int 1,j=0,
=0;
for(i=1; i<Length; i++)
if(vecli}>vecfj]) j=i;
*index=j;
return{vec[j]);
}
/* */

/* This function finds a number that is most often repeated in an array of
integer values, and returns that number. Length of array shoud be less than
100. It is supposed that number is an integer greater than zero.

vector is a pointer to the array. count is the number of times that the
number is repeated. Length is the length of the vector.

*/

int FindMax(int *vector, int *count, int Length, int Max)
{

int i, j, m;
int t[101];

ifMax>100) Max=100;
for(i=0; i<Max+1; i++)
t[i]=0;
for(i=0; i<Length; i++)
t[vectorf[i]}++;
m=t[1];
=L
for(i=1; i<Max+1; i++) {
if(t[i]>m) {
m=t[i];
=i
}
}
*count=m,
return (j); }

45

46

/* This program implements a fuzzy version of K-nearest neighbor classifier.

created by: Shahab Layeghi

created: 9/1/93
last modified: 9/3/93

*/

/* The main program opens a matlab data file, reads the training matrix,
classifies each entry in the testing matrix, and writes the result in an
output file. The file that this program gets the information from should be
called "fdatafile.mat". As the name implies it is in matlab file format.
The data in this file should have the following order:

1. A single variable 'C' which is the number of classes.

2. A single variable 'K' which is the parameter 'K' in K-NN Algorithm.

3. A single variable 'M' which is the coefficient in fuzzy algorithm.

4. A trainig matrix 'P' which contains a set of feature vectors. Each vector

is in a column of the matrix.

5. A class membership matrix 'T' which contains the membership values of the
training set vectors to the classes.

6. An input matrix ‘U’ which contains a set of unclassified feature vectors.

The main program uses the FuzzyKNN routine to classify each one of the input
vectors and saves the results (the classes that these inputs belong to) in a

file called "foutfile.mat". This file is in Matlab format. This file contains

a single variable called fresult. It is a vector of the classes.

This program can be called from dos, or within Matlab by using dos escpae
character 'I". An example Matlab script file that shows how this program can
be used is included in the file "fknntest.m".

*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include <math.h>
#include <conio.h>

#define INPUTFILE "fdatafil. mat"
#define OUTPUTFILE "foutfile.mat"

// Function Prototypes

void FuzzyKNN(double *Input, double *Samples, double *Lables, double *Result),
double FindDistance(double *vecl, double *vec2);
double Maxd(double *vec, int *index, int Length);
int FindMax(int *vector, int *count, int Length, int Max);
int loadmat(FILE * fp,int *type, char *pname, int *mrows, int *ncols,
int *imagf, double **preal, double **pimag);
void savemat(FILE *fp, int type, char *pname, int mrows, int ncols,

47

int imagf, double *preal, double *pimag);

// Global variables, these variables will be set by reading matlab file ------

int Classes; /* the number of classes */
int features; /* Number of features in a class */

int KK ;

/* K in K-nearest neighbors */

int SampleSize; /* Number of Labled Samples */

int TestSize; '

double M; /* Coefficient in fuzzy
algorithm

1

Al

*/

void main()

{

here.

double *Lables;

double *KP;

double *input;

intij;,

FILE *fp,

char name[20];

int type, imagf;,

double *Samples, *isamples; // isamples is for imaginary part of the matrix that is not used in

double *Testdata,
double *result; // pointer to the result matrix
double *iresult; // result vector of classification of a single vector

fp=fopen(INPUTFILE,"rb"),
if(!fp) {
printf("cannot open the file");
exit(-1);
}
// read classes from the file
loadmat(fp, &type, name, &i, &j, &imagf, &KP, &isamples);
if(il=1] j!=1) {
printf("error: You should include classes at the beginning of the file\n");
exit(-1);
}
Classes=*KP,

// read KK from the file

loadmat(fp, &type, name, &i, &j, &imagf, &KP, &isamples);

if(it=111j'=1) {
printf("error: You should include K at the beginning of the file\n");
exit(-1);

}

KK=*KP;

48

I

"

// read M from the file

loadmat(fp, &type, name, &i, &j, &imagf, &KP, &isamples),

if(i!=11 j!=1){
printf("error: You should include M as the thrid parameter\n");
exit(-1);

}

M=*KP;

// read the matrix from the datafile.
loadmat(fp, &type, name, &features, & SampleSize, &imagf, &Samples, &isamples),

// reading lables from data file

loadmat(fp, &type, name, &i, &j, &imagf, &Lables, &isamples);

if(i'=1 || j'=SampleSize) {
printf("error. Number of labels is different from the number of samples\n"),
exit(-1);

}

// read data to be classified from the file

loadmat(fp, &type, name, &i, & TestSize, &imagf, & Testdata, &isamples);

if(i 1= features) {
printf("error: Training and testing matrices should have the same size"),
exit(-1);

}

/I Allocate space for result vector

result = (double *) malloc(TestSize*Classes*sizeof(double));
if('result) {
printf("Error: cannot allocate memory for the result Matrix");

exit(-1);
}
for(j=0; j<TestSize; j++) { // for each input
input=Testdata+j*features;
FuzzyKNN(input, Samples, Lables, iresult);
printf("\n Memberships:");
for(i=0, i<Classes; i++) {
result[j*Classes+i}=iresult[i};
printf(" %lIf ", iresult[i]);
}
}
fclose(fp);
printf("\n End of classification, Now writing the result in the file");
fp=fopen(OUTPUTFILE, "wb");
if(!fp) {
printf("Error: Cannot write the file");
getch();
}
savemat(fp, 0, "fresult”, Classes, TestSize, 0, result, result);
fclose(fp);

49

}

* */

/* This is a fuzzy K Nearest neighbor classifier routine. Input is the

vector to be classified, Samples is the matrix of classified samples,

Lables is the vector of the classes that these samples belong to.

Result is the vector of membership values of Input to each class.

*/

void FuzzyKNN(double *Input, double *Samples, double *Lables, double *Result)
{

intijn;

int nj, k, nk;

double *distance;

int *index;

double x,y;

double *membership; // pointer to membership matrix
double nsum, dsum, temp;

/* This section builds a fuzzy membership matrix from the lables.
Membership of each sample to the class that it belongs to is assigned
to 1, and the membership of it to other classes is assigned to 0 */

membership = (double *) malloc(SampleSize*Classes*sizeof(double)),
if(!membership) {
printf("Error: Not enough memory for membership matrix"),

exit(-1);
}
for(i=0; i<SampleSize*Classes; i++)
*(membership+i)=0; // Initializing matrix to zero

for(j=0; j<SampleSize; j++) {
i=*(Lables+j);
*(membership+i*SampleSize+j)=1;
3

distance = (double *) malloc(KK *sizeof(double)); // allocate space for the vector
if(!distance) {

printf("Error: Not enough memory for distance vector");

exit(-1);
3

index = (int *) malloc(KK*sizeof(int));

if(lindex) {
printf("Error: Not enough memory for index vector”);
exit(-1);

}

for(i=0; i<KX; i++) { // This loop initializes K nearest neighbors to the first K Samples
index[i]=i;
distance[i]=FindDistance(Input, & Samples{i*features]);

}

for(i=KK; i<SampleSize; i++) { // This is the loop that finds the K nearest Neighbors
x=Maxd(distance, &j, KK);
y=FindDistance(Input, &Samples[i*features]);
if(y < x) { // This sample is closest to the input than the farthest K Neighbors

50

distance[j]=y;

index[j]=i;
}
}
for(j=0; j<Classes; j++) {
nsum=dsum=0,
for(n=0; n<KK; n++) {
i=index|[n]; .
temp=FindDistance(Input, &Samples|i*features]);
if(temp < 1e-10) {
zero
Result[j]=membership[j*SampleSize+i];
break;
}
ifM=2)
temp=1/temp;
elseifM!1=1)
temp=pow(l/temp, 1/(M-1));
else
temp=0;
nsum += membership[j*SampleSize+i]*temp;
dsum += temp,
}
if(dsum !=0)
Result[j]=nsum / dsum;
}
free(membership);
free(distance),
free(index),
}
/% i

/* This function returns the Euclidian distance between two vectors */

double FindDistance(double *vecl, double *vec2)

{
int k;
double distance;
distance = 0;
for(k=0; k<features; k++) {
distance += (vecl1[k}-vec2[k])*(vecl[k]-vec2[Kk]);
/! distance += pow(vecl[k]-vec2[k] , 2);
}
return distance;
}
/* */

/* This function finds the biggest element of an array. It returns that
value and also returns the index to that element in index.
*/

//If distance is

51

double Maxd(double *vec, int *index, int Length)

{
int 1,j=0;
=0;
for(i=1; i<Length; i++)
if(vecli]>vec[j}) j=1;
*index=j;
return(vec(j]);
}
/* */

/* This function finds a number that is most often repeated in an array of
integer values, and returns that number. Length of array shoud be less than
100. It is supposed that number is an integer greater than zero.

vector is a pointer to the array. count is the number of times that the
number is repeated. Length is the length of the vector.

*/

int FindMax(int *vector, int *count, int Length, int Max)
{

inti, j, m;
int t[101];

if(Max>100) Max=100;
for(i=0; i<Max+1; i++)
t[i]=0;
for(i=0; i<Length, i++)
t[vector[i]]++;
m=t[1];
=1
for(i=1; i<Max+1; i++) {
if(t[i]>m) {
m=t[i];
=i

*count=m,;
return (j);

The Use of Fuzzy Set Classification for
Pattern Recognition of the Polygraph
(Renewal)

Table of Contents
I. Project SUMMATY ...c.ccovrinsiissniinstniensiesssssssnsessssnisssssossasssessessassssssessassnssssssssssases

IL. Project DESCTIPHON ...ciciviisieessinssieseessressssssnsssnsssessssssessasssssssssssasssasssasassassnsensassass
A. Objectives of Proposed PrOJECtcuvivinninieniiiniininseniesnsicsncsnsnessssessessens

B. INTOQUCHION .ceieiieirinricsciientissssseessisnesssssesssssssssessssssesssssnsssessessassssssnssasssanes

1. The POLYZTaphcociiiiiiiiitiniinninicniinaiissssnsiessessessessssaessssssaessanns

2. FUZZY LOZIC «vevereecirninisinirensissssissesissssnsisississsssssssesmssssnsassssssssssasssasesssns

C. Proposed ReSEarchiimiiininiiniennninisenenniniesnsnssssssesisssesssesssssssssssnes

1. HYPOLRESIS c.vcouerrecrntinentinieninnesierisrissiininisssssissssssssssssssssassasassssssesssssessans

2. MEthOAS ..cvireieciieninicnneiinnisissecnnissenstessessesssssssssassassnessassssssessassesssessassassnse

D. DELVETADIE ...ccceeriirieiiintiniiniiiieissiissansssesssssaesssssnesssssssesssessasssansssassanes

TII. BiblIOIAPRY weeeoiiriiiiiiniiintinniintintinstessisssiessssnssssssssssesssssssssssasssassasssnssssanssnessans
IV. Biographical SKetCh ...t snesssse s ssss e ssesseseessssaesnas
V. BUGEEL ittt icnneiiessesssiaesaesaesesasssssssssesssasssssnsssassessnssasssnsnassas

Appendix:

A. Progress Report
1. Overview
2. Jacob’s Thesis
3. Dastamalchi Thesis
4. Layeghi Thesis
5. IEEE Paper Submission
6. Users Manual

N AaAAvmuwmwiNbhibdNeN —

oo

10

1. Project Summary

Polygraph testing has been used as a technique for measuring deception throughout the twentieth
century. Throughout most of this time period the task of interpreting the data has rested solely
on the trained examiner. Recently, automated computer evaluation of the polygraph using statis-
tically derived discrimination functions has begun in an effort to aid the polygraph examiner.
The purpose of this proposed study is to continue the work begun under ONR Grant N00014-93-
1-0570 to investigate the use of fuzzy set classification to perform the data analysis. In that previ-
ous study it was shown that fuzzy membership functions can accurately classify the MGQT poly-
graph data at greater than 90% accuracy levels. This study will focus on optimizing the fuzzy
classifier further, test the classifier on Zone Comparison Data as well as MGQT, and adapt the
algorithm for use in a real-time testing scenario. At the completion of this project, a software
program will be delivered that will perform classification of the polygraph data on an 80486
based personal computer.

II. Project Description

A. Objectives of Proposed Project

The objectives of the proposed project are to:

(1) study the relationship between the fuzzy classifier and the success of classification;
(2) test the optimized algorithm on both MGQT and zone-comparison data;

(3) and investigate the algorithm in a real-time testing scenario.

B. Introduction

1. The Polygraph

The ability to directly measure the signals, both mechanical and electrical, emanating from the
living human body has been around for hundreds of years. Ever since the beginning of these ob-
servations the interpretation of biological data has been used to understand the physiology,
pathology, neurology, and psychology of the living human. In the late 1800’s, study began on in-
terpreting biological data in an effort to better understand one particular aspect of human cogni-
tive psychology - deceit (Lombroso, 1895). Specifically, respiration rate, heart rate/blood pres-
sure, and galvanic skin response, measured by a device known as the polygraph, were used to de-
termine whether a person was telling the truth or lying. Over the past 90 years this device has
been used with varying degrees of success. Because of its recent and abundant use in criminal in-
vestigations and employee screening, the accuracy of the test has become increasingly critical.

Two of the leading causes of failure of the polygraph test to accurately and definitively assess a
subject’s veracity are the individual administrator’s variability in interpreting the polygraph data
and the complexity of the interpretation protocols (Office of Technology Assessment, 1983). To
overcome this shortcoming of the polygraph test, recent work (see Olsen, 1991) has focused on
the use of computers for interpretation of the biological data.

One technique used for computer analysis of the polygraph involves two steps (Olsen, 1991 and
Kircher, 1988, for example). First the data is described by approximately 20 parameters (descrip-
tors) which have been determined to be important in the evaluation of the polygraph. Second,
this data is evaluated using statistical discriminant analysis to "construct an optimal linear combi-
nation of physiological measures for diagnosing truth and deception” (Kircher, 1988). The results
of Kircher’s work showed that by using a derived discriminating function and arbitrary threshold
level, the computer could equal (and actually exceed) the performance of an experienced poly-
graph examiner. This discriminating function reinforced the observation that the Galvanic Skin
Response is the most important indicator of a subjects truthfulness.

2.

Two questions that arise from this type of discriminant analysis are:
1) Is this discriminant function and threshold level optimal for all subjects? -

2) Are there other possible descriptors of the polygraph which would yield even more informa-
tion about the subject’s veracity?

The use of fuzzy set theory may shed light on these questions, and in so doing may produce an
even more accurate polygraph analysis.

2. Fuzzy Logic

Signals can be generally classified into three categories; deterministic, probabilistic, and possi-
bilistic (fuzzy events). In the case of biological data the patterns are probabilistic or possibilistic
because they generally contain a large random component. As mentioned previously, computer
scoring of the polygraph relies on probabilistic discrimination functions and an arbitrary thresh-
old to classify the data. Fuzzy set theory, however, defines the concept of a possibilistic distribu-
tion as a fuzzy restriction which acts as an elastic constraint on the values that may be assigned
to a variable (Zadeh, 1977). "A fuzzy variable is associated with a possibility distribution in
much the same way as a random variable is associated with a probability distribution." (Zadeh,
1977)

The key to fuzzy logic is that classes of objects exist with a continuum of grades of memberships
(Zadeh, 1965) so that, unlike probabilistic discrimination functions, no arbitrary threshold is
needed. Rather, classification is made according to the degree of membership in a given class. In
addition, the membership function itself can be automatically adapted for a given training set
composed of data and its corresponding class. This is because the theory of possibility, as com-
pared to the theory of probability, relates to the perception of degrees of evidence instead of de-
grees of likelihood (Zadeh, 1977).

Figure #1 shows the components of a fuzzy set classification system (Martin, 1982). One can
see that the learning mechanism is only active in the adaptation of the partition (membership
function). This system operates on a set of data xn(t) which are extracted from a training set, that
is:

x(t) = [x1(1), x2(t), ..., xn(t)] with 0 <xi(t) < 1

The process of extracting the data set from the training set is completed in the "Signal Process-
ing" step. This step is also known as the data parser.

Teacher

training l
set Evalutor

’ [xi) max [k«) of error
Signal .
—>— rocessing —p- Classifier oo
r==1rv=- =" l""'""'-"‘l
| Estimated . Modification |
I | partition]‘ 1| of partition |
| P |
| Memory { Pix} | Learning Section |

Figure #1: Fuzzy Logic Classification System

For each class Cx, there corresponds a vector of descriptors characterizing the class.

Pk = [P1.ks P2k +=+ Pk] With 0 S pji ST

The estimated parameter set, pk, defines a set of membership functions, pk. The degree of mem-
bership of a set x < U to a class Ckis given by the function
n

me=TTpf (1=t
inst

The form of the above functon is not unique. The function has a maximum value when xiis
equal to puk as shown in Figure #2. For example, for input data xi = 0.7, the grades of member-
ship functions uix are 0.4, 0.3, 0.55, and 0.52 corresponding to puk equal t0 0.2, 0.3, 0.7, and 0.8,
respectively. Thus the maximum value is 0.55 when pukis 0.7, which is equal to xi Note the
maximum value is not necessarily 1. Each data xi has equal contribution to the membership
function pk. The possibility that the value xi is an object in class Ck depends on the degree of
membership of xito Ck. The decision for the assignment of elements to classes depends on the
values of the maximum membership. That is:

Cx = max p;(x) where O<i. k<n
i

If the decision disagrees with the training set, the parameter pk(t) will be modified to pk(t+1):

pi(t+1) = pilt) + 1 (x(t) - pk(®))
k()y+ 1

Hix

.OPPPPOO
b’bu-o\\looio

o©
v

©
P

o SJantliene uuluu‘uuluu gesefnane

Figure #2: Example membership functions (from Hu, 1991.)
where Nk(t) is the number of training sets assigned to that class at time t. After that, the teaching
process will continue until the decision is made correctly according to the given teacher.

For the polygraph there are two classes of data, truth and deceit. As mentioned previously, unlike
the statistical approach, the fuzzy classifier can calculate its own membership functions. Also,
no preset thresholds are necessary. There may be, however, many membership functions for
each class and many descriptors for each membership function. The investigation of this dilem-

ma has been one of the focusses of the project.
C. Proposed Research

1. Hypothesis

Work by the author and his graduate students over the past two years has shown the ability of the
fuzzy set algorithm 10 classify human sleep stages from raw EEG data. Similar to the computer
polygraph classification techniques described above, typical computer sleep scoring methods
have used parameterization techniques to parse the data before classification. This data separa-
tion requires a detailed "Gestalt knowledge" of the behavior of the signal and is prone to being
inaccurate over a wide range of subjects. In addition, no concept of the optimality of these pa-
rameters is obtained. In order to bypass these problems, the author has used only the EEG time
series (raw) data and spectrum applied directly to the fuzzy set. Itis theorized that this approach
applied to the analysis of the polygraph will also be successful. (See methods section below for 2

definition of successful classification.)

-5-

It is also believed that the transformation of the polygraph data into the frequency domain will
allow the fuzzy set to detect such known parameters as baseline shift and amplitude modulation
in the respiration rate (suppression and staircase suppression can both be classified as amplitude
modulation). For the same reason it is conjectured that the auto- and crosscorrelation of the three
different data types will present any correlated behavior of the biological signals to the fuzzy
classifier.

In fact, the work proformed under the previous polygraph proposal has begun to confirm these
hypotheses (see Appendix A, "Progress Report"). Over 600 features in time and frequency, both
individual and cross-correlated, were examined. With little optimization of the fuzzy classifica-
tion algorithm, classification levels of greater than ninety percent were achieved.

2. Methods

While time-shortened by almost half a year, three out of the five previous project goals were
achieved. (Once again, please see Appendix A, "Progress Report” for a complete report.) First, a
program for parsing the MGQT data has been developed. This program extracts all waveforms
from the the case files and parses the data taking into account the fact that some MGQT ques-
tions may be asked out of order, may not always be repeated three times, and may not be asked at
all.

Second, a fuzzy classifier has been created, based on the fuzzy k-nearest neighbor algorithm.
This algorithm returns a continuous truth versus deception value between zero and one. It was
trained on 25 truthful and 25 deceptive files, and achieved 91% accuracy on another set of 25
truthful and 25 deceptive files.

Lastly, relationships between feature sets and classifier success were determined. Of great im-
portance was that the set of four best features had a feature from each one of the physiological
channels.

In the proposed study, three goals will be achieved. First, a study of the relationship between
fuzzy classifiers and success of classification will be performed. There are several forms of
fuzzy classifiers, using both unsupervised and supervised learning. The first phase of this project
will focus on which algorithm, or combination of algorithms will be optimal. Specifically, a su-
pervised adaptive fuzzy mebership function algorithm will be compared with the fuzzy k-nearest
neighbor algporithm.

Secondly, a comparison between the performance of this algorithm and algorithm used elsewhere
is important in understanding its benefits. Therefore, the second phase of this project will focus
on comparing our results on the MGQT with our results on the more common zone comparison
test.

Finally, the ultimate goal of this project is to create a program that will assist the polygraph ex-
aminer in evaluating a subject while the examination is in progress. To do this, the algorithm
will output a fracional number from 0 to 1 (0 meaning deceptive and 1 meaning truthful) after
each examination question. If the question is a control or irrelevent question, the examiner will

-6-

tell the program this, and it will learn, in real-time accordingly. Because the examiner is given a
continuous measure of truth or deception, he/she can now focus on questions that are yielding in-
determinate results.

D. Deliverable

At completion of this project, a highly optimized, real-time, automatic polygraph algorithm will
be delivered on IBM PC compatable discs. This program will run on a 80486 PC or faster with
at least 4MB of memory. In addition, as was done on the previous project, a complete report will
be written documenting all results and operations of the algorithm.

II1. Bibliography

1) C. Lombroso, L’ Homme Criminel, Ed. 2, Vol. I, pp. 336-346, 1895.

2) Office of Technology Assessment, "Scientific validity of polygraph testing: A research re-
view and evaluation - A technical memorandum," Washington, DC: US. Government Printing
Office, 1983.

3) Dale E. Olsen, et. al., "Recent developments in polygraph technology," Johns Hopkins APL
Technical Digest, Vol. 12, No. 4, pp. 347-357, 1991.

4) John C. Kircher and David C. Raskin, "Human versus computerized evaluations of polygraph
data in a laboratory setting," Journal of Applied Psychology, Vol. 73, No. 2, pp. 291-302, 1988.

5) L. A. Zadeh, "Fuzzy sets as a basis for a theory of possibility," Fuzzy Sets and Systems, pp. 3-
28, July 1977.

6) L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353, June 1965.

7) J. Aguilar Martin and R. Lopez De Mantaras, "The process of classification and learning the
meaning of linguistic descriptors of concepts, " in Approximate Reasoning and Decision Analy-
sis, edited by M. M. Gupta and E. Sanchez, North-Holland Publishing Company, 1982.

8) Jung Hu and Benjamin Knapp, "Electroencephalogram pattern recognition using fuzzy logic,"
IEEE Proceedings of the 25th Asilomar Conference on Signals, Systems, and Computers, vol. 2,
pp. 805-807, November 1991.

IV. Biographical Sketch

Dr. Knapp is an Associate Professor of Electrical Engineering. He received his B.S. from North
Carolina State University in 1984 and his M.S. in 1986 and Ph.D. in 1989 from Stanford Univer-
sity, all in Electrical Engineering. While at Stanford he was the recipient of the Hewlett-Packard
Faculty Development Fellowship. Dr. Knapp has over 20 presentations and publications in the
areas of biomedical signal analysis and man-machine interfaces. He also has 2 patents and 2
patents pending. His work has been described in such places as Newsweek Magazine and Science
News. In addition to running a research laboratory at San Jose State University, Dr. Knapp is a
visiting scholar at Stanford University’s Center for Computer Research in Music and Acoustics.

V. Budget

One Year Budget Summary
January 1, 1994 - December 31, 1994

AMOUNT
REQUESIED

PERSONNEL

Salaries:
Principal Investigator:
Ben Knapp - 20% Release Time AY $10,214

Graduate Student Assistants (1):
6 mos. @ 50% @ $8.50/hr $4,386
3 mos. @ 100% @ $8.50/hr $4,386

Total Salaries $18,986

Fringe Benefits:
Students @ 5% $439
Release Time @ 34% $3,473

Total Fringe Benefits $3,911

TOTAL PERSONNEL $22,898
EQUIPMENT $0

SUPPLIES $1,000

TOTAL DIRECT COSTS $23,898

INDIRECT COSTS @ 49% MTDC $11,710

TOTAL PROJECT COSTS $35,608

-10-

Appendix A
Progress Report

1. Overview

A. Development of Data Parsing Algorithm

The first phas: ¢f thic projcct was o bc able tc read the
MGQT data files received from the NSA and separate this data
into appropriate features for classification. After
consulting with the University of Washington, we were able
to develop our own data reading progran.

After consultation with experienced polygraph examiners and
a detailed review of the polygraph literature, the data
reading program was then modified to parse the data into a
matrix of features. The feature set included, as outlined in
the project proposal, time domain, frequency domain, and
correlation domain data. Some examples of the feature set
are:

Time Domain Features
- Mean, curvelength, area, and standard deviation for all
polygraph channels
- Average of the amplitudes of the peaks in the cardio and
respiratory channels A
- Derivative of the amplitudes of the peaks of cardio and
respiratory channels
- Number of peaks in the cardio and respiratory channels
-~ Inhalation amplitude/exhalation amplitude of respiratory
channels

-Fundamental frequency of cardio and respiratory signals
-Coherancy and cross power spectral density between cardio
and respiratory channels

-Power spectral density of cardio and respiratory channels
-Integrated power spectral density for cardio channel

- Autoregressive parameters (10) for cardio signal
- Cross-correlation between cardio and respiratory channels

B. Design of Fuzzy Classifier Algorithm

Fuzzy classifier design has focused on the development of a
fuzzy set based knearestneighbor algorithm. The algorithm
learns using a set of MGQT data divided equally between
truthful and deceptive. Since there were 150 deceptive
files and only 50 truthful files, the deceptive files were
divided into three sets of 50 files each. The algorithm was
trained separately for each data set. When a question was
asked more than once by an examiner the gquestions were

scored individually and then combined at the end on a
majority basis. Some examples of the results achieved using
the best four features and no indecision allowed are:

1l 94 78 86
2 89 72 80
3 100 83 91

The following are three reports which describe in detail the
work performed. In addition, a copy of a paper which has
been submitted to the IEEE International Conference on Fuzzy
Systems is also included. Finally, a manual is included

which instructs the user how to repeat the work performed at
SJsu.

A Comparison of Fuzzy Logic
Algorithms for Pattern Recognition

Shahab Layeghi
Electrical Engineering Department
~ San Jose State University
Professor: Ben Knapp

December 1993

I. Introduction

A great amount of work has been done on the application of fuzzy logic techniques for pattern
recognition. In this study some of the more important algorithms are summarized and compared.

Pattern recognition could be defined as search for structure in data. This means organizing data in
groups in a way that members of each group have some kind of similarity. A system that does this job is
called a classifier. A classifier can be designed by a human expert and be used to classify the data (fixed
design). Another approach is to provide the classifier with the data and make it adapt itself according to
the data that it receives. Adaptive systems can be divided into two main categories, supervised and
unsupervised.

In supervised learning, another system (or a human expert) which is usually called a teacher,
furnishes the classifier with the group that each data item belongs to, so that classifier can learn from a set
of labeled input data and be able to classify new data. This process is called training.

In unsupervised learning, which is also called clustering, the system is given a set of unlabled data,
and it is expected that it find internal similarities between the data items and put them in different groups
accordingly. If data are represented quantitatively as vectors in a vector space, data that are spatially close
should be put in one group.

In the section ,a method of classification is described which uses fuzzy linguistic variables. This
method uses human experts to train the system and then uses the labeled linguistic samples to refine the
classifier. In section 2, C-Means Algorithm which is a clustering method is explained. Section 3 covers
K Nearest Neighbor algorithm which is a supervised classification method.

After polygraph files were decoded and put in a directory, they could be processed using
Matlab. It was tried to write the programs in a structured way so that creating and
debugging of individual sections would be easier and program segments would have direct
conformity with conceptual block diagrams. At the lowest levels, there are many Matlab
routines that operate on pieces of data and extract features from them, and return these
features to the calling routines. At the top, there is a Matlab program that extracts the
features for all the files in a directory and saves it as a matrix. The structure of these
programs is explained in the following sections.

The main feature extraction program is a Matlab routine called newfeat. This program
finds the features for the files in a directory and saves the features in a matrix. The main
part of the program is a loop that extracts the features of a single file and puts them ina
vector. This action is repeated for all the files that their name is given. In order for the
Matlab program to find the files to processed in a directory, a C program was written that
searches in a directory and saves all the names of all the files that it finds in an ASCII file
containing a Matlab matrix. This C program is called 'flist' and could be found in the
\polygrap\project\source directory. The way this program works is explained below:

/* This program lists the files in a dos directory and saves this

listing in a file called files.m. This file is actually a Matlab script

that contains a matrix called 'flist’ which holds a filename in each row.
The first character of file names can be given to this program as an
input argument.

Ex:
flist t

is equal to use the dos command
dir t* *

and save the result in a Matlab m file called files.m

*/

After running the flist.exe program in a directory, and checking that the appropriate
filenames are saved in the files.m file, the Matlab program can use them by executing the
command

files

and using the variable flist.

Another important data item that is used in the feature extraction programs is called
feature_list. It is a Matlab matrix that includes the names of feature extraction routines.
In each row of the feature_list matrix a feature extraction routine is named along with the
channel number(s) that this routine will be applied to. For example

'10mean(frag)’

means to apply the mean function to a piece of data called frag, which is defined later.
The channel that data is to be gathered from is channel 1. As another example

*26¢rosscor(frag, frag3)'

means to apply the function crosscor to two pieces of data coming from channels 2 and 6,
~ in variables called frag and frag3.

feature_list is defined in newfeat program. All the features that are extracted from the
data are listed in it. If a new feature is to be investigated, it is enough to write a program
that extracts it, and add that program name in this list.

Note: It is highly recommended that the programs newfeat, feature, and processf be read
carefully before making any changes in feature list.

Before being able to do any processing on the data, for each data file another file should
be created that holds the types of the questions. These files are named zzname.0x4. Note
that these files are not a standard part of axciton files and were created here by referring to
the question files and data sheets that accompanied each the files. The format of these
files is as follows:

x 0 00 O
al bl cl dl el
a2 b2 c2 d2 e2
a3 b3 c3 d3 e3

x is either one or zero. 1 means the file is deceptive, and zero means it is non-deceptive.
The rows 2, 3 and 4 in this file show the numbers of relevant, irrelevant, and control
questions. For example for a deceptive file in which questions 3, 5, 8 and 9 are relevant,
questions 1, 2, 4, and 7 are irrelevant, and questions 6 and 10 are control, a question file is
constructed that looks like this:

0
5
2

O\ = U
—

O 00 O
(e BN BNe M o]
O O OO

0

The newfeat program, for each data file which is listed in flist, loads the above mentioned
question file to find the question types. Then it calls the actual feature extraction routine
which is called feature. The program feature finds all the features for each relevant,
irrelevant, and control question and returns the results in a vector. This vector is added as
a new column to a matrix called M. At the end of the newfeat program the matrix M is
saved in a file. This file is manipulated by another program called processf.

processf is a program that loads the M matrix, combines the features for each question in
different ways that are explained in reports of Mitra and Shahab, and saves the resultant
matirx, the F matrix, in a file. '

The above procedure was repeated for the polygraph files in several directories. One of
the directories contained files for non-deceptive cases and the other ones included
deceptive files. Three sets of data were built by combining the features for non-deceptive
cases with three sets of deceptive files. Each data set contained 50 deceptive and 50 non-
deceptive cases. These sets were used by classification programs.

Classification:

There are two classifier programs written for this project, fknn and cknn, which implement
fuzzy and crisp K-nearest neighbor classifiers accordingly. These programs are written in
C programming language. The way they interact with Matlab is through reading and
writing files in Matlab format, that is .mat files. There are two C functions inside these
programs called loadmat and savemat which are interfaces to Matlab files and can be used
to load and save date, which in Matlab are matrices, from Matlab files. These two
functions are in a file called matldsv.c which should be compiled with the source files that
use them. fknn and cknn programs load matrices that include the features and were
prepared by Matlab feature extraction routines. After loading the matrices, the feature
vectors in test matrix are classified individually, and the result is saved in a file as a Matlab
matrix. The comments in the source codes of the programs cknn and fknn are repeated
here for reference:

/* cknn: This program implements a K-nearest neighbor classifier.

The main program opens a Matlab data file, reads the training matrix,
classifies each entry in the testing matrix, and writes the result in an
output file. The file that this program gets the information from should be
called "cdatafil. mat". As the name implies it is in Matlab file format.

The data in this file should have the following order:

1. A single variable 'C' which is the number of classes.

2. A single variable 'K' which is the parameter 'K' in K-NN Algorithm.

3. A training matrix 'P' which contains a set of feature vectors. Each vector
is in a column of the matrix.

4. A classes vector 'T' which contains the classes of the training set

5. An input matrix 'U’ which contains a set of unclassified feature vectors.

The main program uses the Crisp KNN routine to classify each one of the input
vectors and saves the results (the classes that these inputs belong to) in a

file called coutfile.mat. This file is in Matlab format. This file contains

a vector of the classes called:

‘cresult’

This program can be called from dos, or within Matlab by using dos escape
character '!I'. An example Matlab script file that shows how this program can
be used is included in the file "cknntest.m".

*/
/* fknn: This program implements a fuzzy version of K-nearest neighbor classifier.

The main program opens a Matlab data file, reads the training matrix,
classifies each entry in the testing matrix, and writes the result in an
output file. The file that this program gets the information from should be
called "fdatafile.mat". As the name implies it is in Matlab file format.
The data in this file should have the following order:

1. A single variable 'C' which is the number of classes.

2. A single variable 'K' which is the parameter 'K' in K-NN Algorithm.

3. A single variable 'M' which is the coefficient in fuzzy algorithm.

4. A training matrix 'P' which contains a set of feature vectors. Each vector

is in a column of the matrix.

5. A class membership matrix 'T' which contains the membership values of the
training set vectors to the classes.

6. An input matrix 'U' which contains a set of unclassified feature vectors.

The main program uses the Fuzzy KNN routine to classify each one of the input
vectors and saves the results (the memberships of the inputs to classes) in a

file called "foutfile.mat". This file is in Matlab format. This file contains

a single variable called fresult. It is a matrix of the memberships of the

inputs to the classes.

This program can be called from dos, or within Matlab by using dos escape
character '!I'. An example Matlab script file that shows how this program can
be used is included in the file "fknntest.m".

*/

As mentioned above, the programs fknn and cknn are the actual classifiers which can be
called directly from dos or within a Matlab program. Several Matlab programs were
written that used these two programs for classification of data. The Matlab programs
acted mostly as a front end or user interface for the classifier programs. A listing of many
Matlab programs and functions is included as an appendix in this report. Understanding of
all the functions is not necessary because they are used inside the programs. Some of the

programs were created to test other programs or to experiment with the data. These
programs are not necessary for classification, but knowing about them might help to
prevent recoding routines that are already there. In the case of user interface programs,
the best way is to run them and become familiar with the way they work. They were
intended to be very flexible, and usually by changing a few parameters inside the code,
they can be used for other purposes.

Classifier programs were used not only to classify a given data set, but also to select a set

of good features from all the features that initially were tried. For a detailed discussion of
the steps involved in this refer to Shahab's and Mitra's reports. Some of the programs and
data files which were used or produced in this stage are explained here:

Classify is a Matlab program that loads a feature matrix from a .mat file, randomly breaks
it into a set of training, and a set of testing feature vectors, classifies every entry in the
testing set using all the entries in the training set by calling either fknn or cknn programs,
repeats this process a number of time, and returns the result of classification of each file
and the percentage of correct classification and a performance index for the classification.
Some of the parameters like the filename to load can be changed inside the program
classify.m. Other parameters can be changed while the program is running. This program
is extremely useful for experimenting with combinations of features, and even includes an
option to plot the scattering of the first two features.

Note: By setting percent_training=1, The testing and training sets wont be randomly
selected, instead, all the entries except one are used in the training set and that entry is
classified. This action is repeated for all the entries in the matrix.

Clas_aut is an automated version of classify program. Instead of asking the user for
entering parameters, this program includes a loop that checks the classifications using all
the features individually. The results are saved in a file called clas_res. All the other
parameters should be set in the program. It should be noted that running this program
might take a long time depending on the number of features and repetitions. Clasaut2,
clasaut3, and clasaut4 are alterations of clas_aut that instead of using single features use
combinations of 2 to 4 features. Clasaut2 tries all the pairwise combinations of the
features. Clasaut3 and clasaut4 use the combinations of 2 and 3 features supplied to them
in the program and combine them with other features to test the combinations of 3 and 4
features.

bestfk is a Matlab script that sorts the features according to their performance in
classifying the files. Note that the correct_classification vectors for data sets 1-3 were
saved as resl, res2, and res3 in a file called Knn-res. This file is loaded by the bestfk
program. The best features are found for the three data sets. For more details about the
selection strategy refer to Shahab's report. It is informative to look at the program code
to find out about the outputs that it produces.

Bestfs is the same program as bestfk. The only difference is that it loads the results from a
file called scat_res. This file is produced by saving the results of the scatter criterion.

Scat is a Matlab function that finds the scatter criterion for the feature vectors in a matrix.
It was used for the feature matrices of sets 1-3, and the results were saved in scat_res.
Bestf2, bestf3, and bestf4 work the same way as bestfk, but as output give the best
combinations of 2-4 features.

Appendix: A listing of the Matlab programs

bestf2:

This Matlab script finds the best 30 combinations of features from three
sets of features. Same features are tried on 3 sets of data.

This is used to rank the combinations of 2 features

bestf3:
Same as bestf2, but for combinations of 3 features.

bestf4:
Same as bestf2, but for combinations of 4 features.

bestfs:

This Matlab script tries a method to find the best 30 features from three

sets of features. Same features are tried on 3 sets of data. Scatter criterion is
used to measure each feature's performance.

Note that for the features 1-651 each set of seven features are in fact the same
feature combined differently for different features. For the rest of the features
i.e. 652-669 each set of three is the same feature.

bestfk:

This Matlab script tries a method to find the best 30 features from three

sets of features. Same features are tried on 3 sets of data. The results of
classification using a KNN classifier is saved on a vector called correct_res.
Note that for the features 1-651 each set of seven features are in fact the same
feature combined differently for different features. For the rest of the features
1.e. 652-669 each set of three is the same feature.

clas_aut

This program adds a loop to the classify program. It repeats classification
for different input vectors. It saves the results (percentage correctly
classified and performance index)

as two vectors in a file called clas_res.

clasaut2:

This program adds a loop to the classify program. It repeats classification

for different combinations of 2 features. It saves the results (percentage correctly
classified and performance index) and the indexes of these features

in a file called clasres2.

clasaut3:
same as clasaut2, but for the combinations of 3 features.

clasaut4:
| same as clasaut4, but for the combinations of 4 features.

classify:

This script parses a matrix of polygraph
vectors into training and testing vectors.
It then calls the classifier, trains, tests
and gives results.

clusterl:

This is a program that tests the K-Nearest-Neighbor
algorithm with a set of two class data that have
gaussian distribution

cluster2:
Another program like cluster].

feattst:
An older version of classify.

feattst2:
Another version of feattst.

featurev:
Mitra
plotf:

This script prompts the use to enter two features and plots them.
randvect:

function [y,x] = randvect(elements,maximum)

This function creates a vector

of random numbers between 1
and the maximum number given
to the function (maximum).

The length of the vector is
specified by the number of
elements given to the function.
e.g. randvect(elements,maximum)

scat:
function J=scat(Sample, Class)

J=scat(Sample, Class) ,

returns a value that shows how the labeled samples of a two class distribution
are scattered. Samples is a vector that contains the values of the samples.
Class is a vector that contains the class labels(0 or 1).

The criterion function is:

J=(m1-m2)"2 / s1"2+s2"2 ‘

m's are the means for the classes and S's are scatters of samples.
Larger result means better separation between the classes.
Reference: Pattern Classification and Scene Analysis, Duda and Hart

scatv

function JV=scatv(M, Class)

scatv returns a vector that contains the scatter criterion of a matrix.
each row of the matrix M contains values of the samples for one feature.
Class is the class labels for the samples.

see also scat

Appendix D: Use of Fuzzy Set Classification for

Pattern Recognition of the Polygraph

Ramin Djamschidi

Fuzzy Pattern Recognition of PolyGraph

Fall 1994

12/19/95

Use of
FUZZY

Set Classification for

PATTERN RECOGNITION
Of the

POLYGRAPH

A Thesis
Presented to
The Faculty of the Department of Electrical Engineering at

San Jose State University
and
Rheinisch-Westfilische Technische Hochschule Aachen

In Partial Fulfillment
of the Requirements for the Degree
| Diplom

By
Ramin Djamschidi
San Jose, California
September, 1994

ACKNOWLEDGMENT

While doing this project, I have been fortunate to receive great assistance, suggestions and support from
numerous students, colleagues and friends. It was a wonderful experience for me to work and live with
each and every one of them. Not to mention, the huge amount of the encouraging e-mails.

I would like to thank Jiirgen Niemeyer, Elmar Bongers and Robert Hilbing for their continuos and reliable
help from Germany (you guys took away - more than once - some big burdens from my shoulder). How
much I enjoyed Bob's e-mails. (Thank you for sharing with me your life-changing experiences...). I would
like to thank Tim for helping me set the foundation of where I stand in my life.

I was surrounded by an awesome ‘crowd' of people in my lab, beginning with Raghu Kondapalli who was
always there with his practical and honest helps with an additional portion of encouraging humor. In
these very last seconds of typing my report, (you are sitting in front of me and trying to fix a table for me -
it is 3:00a.m!) I realize the privilege of getting you to know. I would also thank Shahab for his initial
advice and for being there for me as a friend and also Mitra for her irreplaceable help for figuring out the
names of the features. How ashamed I was to bother her so often.

I would also like to thank those who "officially" were set apart to help me: As they were Chuck Lam, Ulka
Agarwal and Michelle Badal. How could I have ever accomplished my thesis in this quality without their
assistance? I would specially like to express my thanks to Chuck for his significant role by the LMS part
of my project. (All the approvals I might get for it is completely yours.)

I would like to express my gratitude to my former supervisor Prof. Duda who was always there for a
"genius"-advice. Without his initial invitation for my first project, I could not have come to SISU. I would
also thank Melinda and Lois in the EE-office for their humorous and reliable helps. I would never forget
the very first days when I came here as a stranger and met them, (How could they remember my name...?7)
I would also thank Phelomena - in the nicest building of SJSU where my grant came in - for her endless
time to help me fill all the forms. I do not know exactly how many people were actually involved in the
process of supporting me financially till the actual grant came.

I cannot finish this list without mentioning Dolat and Parviz for their patience and care throughout their
most challenging phase of life. (By the way, how many months did I actually live at your home?)

Last but not least, I would like to express my highest gratitude to my supervisors in Aachen and San Jose
who actually made all these possible for me. I really appreciate Prof. Rau's efforts to lead the necessary
procedures for my project at SJSU. How much encouraging was that for me when he sent the very initial
fax for my thesis at the second day of his vacation. I would also like to thank my direct supervisor Dr.
Thull for his continuos supports and tips. He never forgot to add some sparkling statements to his emails
(and those from Marian!). I hope I filled his expectations.

And finally, Prof. Knapp's wonderful companionship combined with the unlimited freedom of decision he
gave me, is the major reason of this project's success. Not to mention, his efforts to help me to bridge the
financial gap till I received my grant and his humorous comforts when something went wrong. It was an
irreplaceable experience to work with him.

Lehrstuhl fir Biomedizinische Technik

der Rheinisch-Westfilischen Technischen Hochschule Aachen
Univ.-Prof. Dipl.-Ing. Dr. rer. nat. Gunter Rau

Heimholtz-Institut + PauwelsstraBe 20 - D-52074 Aachen
Telefon: (0241) 80-7111/12 - Telefax: (0241) 8888-418

DIPLOMARBEIT
fir

Herrn Ramin Djamschidi

"Use of fuzzy set classification for pattern recognition of the
polygraph"

23, Marz 1384

T EEEEREER RN N NI SN NI AN L A ssesscssenscse es e s es e eCOOSOEBNOEONDOSTSES .

Univ.-Prof. Dr. rer. nat. G. Rau Vors1tzender des Prufungsausschusses

DIPLOMARBETIT
fur
Herrn Ramin Djamschidi

Theme: Use of fuzzy set classification for pattern recognition of
the Polygraph

Task iption:

Polygraph testing has been used as a technique for measuring
deception throughout the twentieth century. Throughout most of
this time period the task of interpreting the data has rested
solely on the trained examiner. Recently, automated computer
evaluation of the polygraph using statistically derived
discrimination functions has begun in an effort to aid the
polygraph examiner. The purpose of this diploma thesis is to
investigate the use of fuzzy set classification to perform the
data analysis. The capability of the fuzzy membership functions to
be trained relatively quickly will enable computer evaluation of
the polygraph to adapt to individual subject differences, possibly
during the testing procedure. This training may also reveal
important parameters of the polygraph data which have not yet been
considered useful.

The diploma thesis will have three parts. The first will be in
determining an optimal fuzzy pattern recognition technique for
polygraph analysis. While previous students have investigated an
optimal feature set, an optimal classifier has yet to be
determined. Secondly he will test this optimal classifier on two
types of polygraph data. Finally he will work on getting this
algorithm to operate in a psuedo-real-time environment based on an
80486 personal computer.

Beginn der Arbeit: 31.3.1994
Tag der Abgabe: 30.9.1994

Betreuer:

Associate Professor
Dep. of Electrical Engineering
San Jose State University

Mo,

Berichter: Univ.-Prof. Dr. rer. nat. G. Rau

Ich versichere, daB ich diese Arbeit im Rahmen der Betreuung durch die

Institute selbstindig angefertigt habe.

Aachen, den 30-05‘l334 ’%\A

--------- (Unterschrift)

AN

Die Arbeit ist nur zum internen Gebrauch bestimmt.

Alle Urheberrechte liegen beim Lehrstuhl fir Biomedizinische Technik.

Table of contents

§1. ABSRACT

§2. INTRODUCTION

2.1. POLYGRAPH

2.1.1. Preview

2.1.2. History

2.1.3. Modern test format

2.1.4. Present day equipment

2.2. PATTERN RECOGNITION UTILIZING FUZZY TOOLS

2.2.1. Why the "FUZZY" approach?

2.2.2. Why fuzzy-c-means?

2.2.3. Fuzzy-c-means algorithm and its interpretation
2.2.3.1. FCM code - An iterative procedure
2.2.3.2. Influential parameters - meanings & interpretations

2.2.4. Why LMS fuzzy adaptive filter?

2.2.5. LMS fuzzy adaptive filter and its interpretation

2.2.5.1. Filter code - An adaptive procedure
2.2.5.2. Influential parameters - meanings & interpretations

§3. APPROACH

3.1. PartI-FCM

3.1.2. Initial stage - conditions and methods
3.1.3. Clustering stage

O 92 & &

10

10

13

14

14

16

18

18

18

20

22

22

22
23

3.1.3.1. One-dimensional search and selection of the
"best" single features

3.1.3.2. Multi-dimensional search for the best feature
combination
3.1.3.2.1. Overview
3.1.3.2.2. Random search method
3.1.3.2.3. Pseudo-exhaustive search method
3.1.3.2.4. Genetic search method

3.1.3.3. General process - Optimizations by changing

parameters
3.1.3.4. Evaluation strategy
3.2. Part II - LMS fuzzy adaptive filter

3.2.1. Feature selection by visual inspection
3.2.2. Setting linguistic rules

3.2.3. Training, testing and evaluation strategy
3.2.4. What to do with the memorizing problem?

§4. RESULTS AND CONCLUSIONS

4.1. Fuzzy-c-means
4.1.1. Searching for the best level of fuzziness
4.1.2. Searching for the best feature combination
4.1.2.1. Results of the conventional methods and general
observations
4.1.2.2. Results of the genetic method
4.1.2.3. Final results of FCM,
A comparison between all three polydat_i's

4.2. LMS fuzzy adaptive filter

23

28
28
29
30
30

32

34

36

36

39

40

42

44

44

44

49

49
56

62

66

4.3. Other observations 69

4.3. A comparison between the algorithms ' 71

§5. FUTURE STEPS AND SUGGESTIONS 74
5.1. The algorithms 74

5.2. The polygraph examination 77

§6. APPENDIX 78
6.1. Table of the feature names 79

6.2. Table of the polygraph files 84

6.3. User interface v 85

6.4. Program listings - Implementation in MATLAB 86
EPILOGUE - Motivation, challenges and risks 106

REFERENCES 107

§1. ABSTRACT

Polygraph tests are a widely used method to distingﬁish between truth and deception.
During a polygraph test, the subject is asked a series of control, relevant and irrelevant
questions which provide different physiological responses useful for a comparison. The
three physiological responses that are currently measured are Electrocardiogram, Galvanic
Skin Response (GSR) and Respiration.

Polygraph charts are usually analyzed by human interpreters. However, computer
algorithms are now being developed to score the tests or verify the results. These methods
are based on statistical classification techniques.

In this study two different fuzzy algorithms were implemented to classify the polygraph
charts, using a number of time, frequency and correlation domain features. These two
algorithms and their results were then compared with those from the previous works. The
major advantage of using fuzzy set theory is that it does not simply assign each input to
one of the clusters, but it gives a degree of belonging of an input to each cluster.

The average correct detection rate we achieved in this study was 80% - 85%. Using
certain set of data we even obtained up to 97% correct detections.

§2. INTRODUCTION

2.1. POLYGRAPH!

2.1.1. Preview:

Polygraph examinations are the most widely used method to distinguish between truth and
deception. In a Polygraph examination a person is connected to a special instrument called
a Polygraph which records several physiological signals such as blood pressure, Galvanic
Skin Response, and respiration. The subject is asked a set of questions by an examiner. By
looking at these signals the examiner is able to determine the reactions of the subject to
the questions and decide whether the person was truthful or deceptive in answering each

question.

The problem with human classification of Polygraph tests is that the outcome depends on
the examiner's experience and personal opinion. Automatic scoring of Polygraph tests has
been a subject of extensive research. Several methods for Polygraph classification have
been studied which are mostly based on statistical classification techniques.

Digitized Polygraph data used in this project were collected from various police stations.
The data files were organized according to the test format used and were decoded to
ASCII format so they can be read by Matlab. Preprocessing and feature extraction
routines were implemented in the Matlab language in privious works [Layeghi1993,1]
[Dastmalchi1993][Jacobs1993]. Three sets of files were chosen, each one of them
contained 50 deceptive and SO non-deceptive files.

These files are listed in the appendix, Fig.42.

2.1.2. History:

The first attempt to use a scientific instrument in an effort to detect deception occurred
around 1895 [Reid1966]. That was the year that Caesar Lombroso published the results of
his experiments in which a hydrosphygmograph was used to measure the blood pressure-
pulse changes of criminals in order to determine whether or not they were deceptive.
Although the hydrosphygmograph was originally intended to be used for medical

Iportions of this section were extracted from [Layeghil993,1] using particularly [Capps1992] [Olsen1983]
[Reid1966].

purposes, Lombroso found that it worked well for lie detection. Lombroso may have been
the first to use a peak of tension test format. This was done by showing a suspect a series
of photographs of children, one being the victim of sexual assault. If the suspect did not
react more to the victims picture than the pictures of the other children, Lombroso
concluded that the suspect did not know what the victim looked like and therefore was not
the alleged perpetrator.

In 1914 Vittorio Benussi published his research on predicting deception by measuring
recorded respiration tracings [Capps1992]. He found that if the length of inspiration were
divide by the length of expiration, the ratio would be larger after lying than before lying
and also before telling the truth than after telling the truth. In 1921 John A. Larson
constructed an instrument capable of simultaneously recording blood pressure pulse and
respiration during an examination [Reid1966] [Capps1992]. Larson reported accurate
results which prompted Leonarde Keeler to construct a better version of this instrument in
1926 [Reid1966] [Capps1992].

The use of galvanic skin response in lie detection began during the turn of the century. It's
usefulness, however, did not become evident until the 1930's during which time several
articles written by Father Walter G. Summers of Fordham University in New York
[Capps1992]. In these articles he reports over 90 criminal cases in which examination
using the galvanic skin response had all been successful and confirmed by confession or

supplementary evidence.
The usefulness of the galvanic skin response prompted Keeler to add an galvanometer to

his polygraph. At the time of Keelers death in 1949, the Keeler Polygraph recorded blood
pressure-pulse, respiration, and galvanic skin response [Reid1966].

2.1.3. Modern Test Formats:

The effectiveness of a polygraph examination is often the result of the test format that is
used. A polygraph test format consists of an ordered combination of relevant questions
about an issue, control questions that provide a physical response for comparison, and
irrelevant questions that also provide a response or the lack of a response for comparison
[Olsen1983][Capps1992].

Three general types of test formats are in use today. These are Control Question Tests,
Relevant-Irrelevant Tests, and Concealed Knowledge Tests. Each of the general test
formats may have a number of more specific variations. Each examination consists of two
to five sessions containing a prescribed series of questions. The test format that is used in

an examination is determined by the test objective [Reid1966] [Capps1992].

1. The Concealed Knowledge Test, also called peak of tension test, is used when facts
about a crime are known only by the investigators and not by the public. In this case, a
subject would not know the facts unless he or she was guilty of the crime. For example, if
a gun was used in a crime and the public did not know the caliber, an examiner could ask a
suspect, if it was a 22 caliber, a 38 caliber, or a 9 mm. If the gun used was a 9 mm and the
suspect was deceptive, a polygraph chart would probably indicate evidence of deception.

2. A Control Question Test? is often used in criminal investigations. In this type of test a
series of relevant, irrelevant, and control questions are asked:

s A relevant question is one which is specific to the crime being investigated.
For example, "Did you steal the money?".

* A control question is designed to make the subject feel uncomfortable. It
is not specific to the crime being investigated however it may be related in
an indirect way. A control question that could follow the relevant question
stated above is "Have you ever taken anything that did not belong to you?".
The control questions are compared to the relevant questions and if the
responses to the relevant questions are greater, the subject is usually classified

as deceptive.

* Irrelevant questions are used as buffers. Examples of irrelevant questions are
"Are the lights in this room on?" or "Is today Monday?".

3. Relevant-Irrelevant Tests are usually used to test people trying to obtain security
clearance or get a job. In this test, relevant questions are compared to irrelevant questions.
Very few control questions are asked. The purpose of control questions in this test is to
make sure that the subject is capable of reacting at all.

2 It was decided to use this method in our project (as it was also in previous works).

2.1.4. Present Day Equipment

The most popular polygraph machines today are the Reid Polygraph developed in 1945
and the Axciton Systems computerized polygraph developed in 1989 [Olsen1983]. The
Reid polygraph scrolls a piece of paper under pens that record the biological signals. The
Axciton polygraph digitizes physiological signals and uses a computer to process them.
The sampling frequency of the Axciton machine is 30 Hz. Axciton provides a computer
based system for ranking the subject responses but allows printouts of the charts to be

scored by hand the traditional way.

Both machines record the same biological signals using standard methods. Blood pressure
is measured by placing a standard blood pressure cuff on the arm over the brachial artery.
Respiration is monitored by placing rubber tubes around the abdominal area and the chest
of the subject. This results in two signals, a lower and upper respiratory signal. Skin
conductivity is measured by placing electrodes on two fingers of the same hand.

The focus of this thesis is to investigate two different fuzzy pattern recognition algorithms
using the aforementioned signals.

2.2. PATTERN RECOGNITION UTILIZING FUZZY TOOLS

2.2.1. Why the "FUZZY" approach?

While observing the history of science, we notice that one of its major goals has always
been what we call today "pattern recognition". Having this in mind, man created models,
functional relationships and mathematical tools to come closer to a perfect and precise
model for almost every area of the nature and our being. In fact, "precision " became more
and more important, to the extent that an imprecise model was a bad model by default.

1965 Lotfi A. Zadeh introduced in his innovative paper [Zadeh1965] an "imprecise”
structure for mathematical observation; Hence, the fuzzy set was born. A companion to
the classical one with often more useful and suitable representation of our environment.

"The fuzzy set was conceived as a result of an attempt to come to grips with the problem
of pattern recognition in the context of imprecisely defined categories. In such cases, the
belonging of an object to a class is a matter of degree, as is the question of whether or not
a group of objects form a cluster"; These were the introductory words from L.A. Zadeh in
[Bezdek1981]. They summarize the fundament of any fuzzy clustering or classifying
algorithm cdnceming any search of data structure or pattern recognition. This concept is
exactly what this project is all about.

An example:

Imagine, you have two groups of objects "chairs" and "desks" in different varieties. In a
simple version of a typical pattern recognition problem, you have the task to cluster or
classify the given objects into these two groups. In reality, we will also have other objects
like a big box or a bed within the pool of the objects, but only the two aforementioned
clusters by definition. Now, a conventional crisp clustering method would put these
critical objects in either one of these two clusters. Thus, the big box or the bed may be
labeled as if they would be chairs.

A fuzzy clustering method would label the objects with soft membership values. In this
case, a big box (that can be used as a chair or a desk) might be labeled with 0.6 degree
chair and 0.4 desk. Information like this serves a useful purpose - "fuzzy memberships in
several classes are a signal to take a second look" [Bezdek1993] [Bezdek1992]:

10

Hard memberships of data cannot support this. Thus, the fuzzy model provides a richer
and more flexible solution structure, one that models the real objects with a finer degree of
detail than the harshness of the crisp models. Notice also that hard membership values
build a subset of the fuzzy membership3 set. ’

There are different types of fuzzy algorithms to find the appropriate membership values
within the data. In this project, we used the follwoing two approaches:

1. Clustering algorithms:

Given any finite data, the problem of clustering is to find similarities between the objects
of the data and to assign labels that matching objects would belong to the same subgroups.
The algorithm starts its search without any initial interpretative information about the data
elements. It only seeks for objective numerical similarities between the elements. Because
the initial objects are unlabeled, this method is often called "unsupervised learning". The
word learning® implies that the clustering algorithm will ultimately find the correct labels
at the end of the process. This is what we hope to obtain, but we do not know it a priori.

Notice that because of the unsupervised nature of this algorithm, we may find "correct"
clusters which represent some similarities, but not the ones we were looking for. In the
aforementioned example with chairs and desks, the algorithm may provide two clusters of
"wood-made" and "metal-made" objects (which are also correct), but not "chairs" and
"desks" as we had hoped for.

In this case, the performance of a clustering model is influenced by the choice of the
parameters, features, geometrical properties and our eventual interpretation of the labels.

2. Classifying algorithms:

In contrast to a clustering system which labels a given data, a classifier is capable - once it
is defined (and trained) - of labelling every appropriate data. In addition, a classifying
system is ususally initialized by labeled objects. In these cases, we call this method

"supervised learning".

3Notice that membership values are not probabilities; they are similarities of object vectors to a class
structure. They represent the degree of belonging of an object to a group of objects.
4The word learning does not imply any training. In fact, a clustering system - as is its nature - is almost

the opposite of any system which learns by training.
5See chapter 2.2.3.2. for the meanings of the parameters and chapter 3. 1.3.3. for the strategies we used.

11

Notice that we can also use a clustering algorithm as a modified classifying algorithm:
After having set the optimal combination of parameters and features, we can use the

clustering system to classify any new data by:

* adding the new element to a given and already correct clustered data, and letting
the system relabelé the data. Thus, our new object ends up to be in one of the

clusters representing its identity,

» saving all the parameters, cluster centers and the data elements and calculate
appropriately the membership value of the new object, which will eventually
represent its identity.

Running a new clustering process with one more element will probably change the structure of the
original clusters, because the cluster centers and the membership values of each element depend on all of
the members. In spite of this fact, we will be able to classify a normal (= not an outlier) object by having
a large number of already clustered objects in a stable condition.

12

2.2.2. Why fuzzy-c-means (FCM)?

One of the most significant characteristic of fuzzy-c-means algotithm is its "fuzziness"7, as
the name assumes. Unlike crisp clustering methods, FCM gives us "membership functions"
c [0, 1] which determine the grade of belongingness of the elements to a cluster. As
mentioned before, this information is totally lost by conventional clustering techniques.
The advantage of FCM is the fact that the results we may get from a crisp clustering
method are automatically within those from FCM. |

We chose FCM as an alternative and a comparison to the fuzzy K-Nearest-Neighbor
algorithm (KNN) investigated previously [Layeghi1993,1][Dastmalchi1993][Jacobs1993],
specially because FCM is an unsupervised clustering method which works only by using
"mathematical” tools such as spatial distances or similarities, without any training or
additional interpretative information.

By this method, good® features will then hopefully provide an optimal mathematical
grouping that presents in some sense an accurate portrayal of natural structures in the
physical process from where the polygraph data are drived.

Why we chose FCM algorithm:

Because it
. does not need previous training,

. does not make any assumption about
the distribution of samples,

. is unsupervised, objective and self organized,

. can be used as an alternative and a comparison
to fuzzy KNN investigated previously.

Fig.1: FCM characteristics

7See chapter 2.1.1. for characteristics of a fuzzy approach.
8"Good" features are in our study those which can cluster the data in deceptive and truthful groups.

13

2.2.3. Fuzzy-c-means algorithm and its interpretation

2.2.3.1. FCM code - An iterative procedure:

The fuzzy-c-means algorithm? is basically an iterative procedure to minimize an objective
function J, representing a spatial fuzzy distance between data points x; and cluster
centers v; . In this project, I chose the most widely used Euclidean distance, i.e. the sum of

the squared errors performance index;

In(U,v) = ZZ(uik)m"xk [

k=1 i=1l

o X ={X,%,....%, } € R’ is a finite data set in the pattern space R,

e cis a fixed and known number of clusters (here: ¢=2).
o U=[u,] €eR™ is a fuzzy c-partition of X, #, is referred to as the grade of membership

of Xy to the cluster i. , satisfy the following constraints;

O<Zu,.k <ml<i<c
k=1

o V=(V,%,,..,v,) €R® ; each v; € R’ represents a prototype of class i.

e m is the weighting exponent and represents the level of fuzziness; 1<m <.

9[Ruspini1969] was the first one who suggested the structure of fuzzy-c-partition spaces. The fuzzy-c-
means algorithm (originally ISODATA) was initially developed by [Dunnl974] and generalized by
[Bezdek1973].

Dunn extended and developed the classical "within-groups sum of the squared errors" (WGSS) function to
a fuzzy clustering criterion and developed the fuzzy-c-means clustering algorithm to minimize the
objective function through an iterative method. Bezdek further extended the fuzzy objective function
proposed by Dunn to a more genral form of fuzzy clustering criterion by introducing the weighting
exponent m, 1 < m < oo, It turns out that Dunn's function is a special case (m=2) of an infinite family of
objective functions.

14

2 .
o “xk -V “ 4 is an inner product induced norm on R’

By differentiation J,,(U,v) with respect to u, where V; is fixed and to v; where U is

fixed, we obtain

_ 1
Up = 1

${ bl "

il

and

Z(uzk) Xk
2(u,k)

These two equations cannot be solved analytlcally, but approximate solutions can be
obtained by an iterative procedure. The FCM uses iterative optimization of an objective
function based on a weighted similarity measure between data points and cluster centers.

Step I. Input the number of clusters, ¢, the weighting exponent, m, and the error
tolerance, €.

Step 2. Input the data X = { X,X3,...,%, }.

Step 3. Initialize the membership values U = [u,.k]

Step 4. Calculate the new cluster centers y® by the 3rd equation.

Step 5. Update the ! by the 2nd equation.

Step 6. Return to Step 3, if “U) _yll) “ > €; otherwise output U...

X:[sxn] n: # of data elements - polygraph test sessions.
U:[cxn] s: # of features - dimension of the samples in each cluster.
V:[sxc] c: # of clusters

Fig.2: The iterative FCM! procedure

108ee Fig.3 , the flow chart of the FCM code implemented in this project.

15

I X N
Initialization
—
p— —
‘,l(L)
[Adjustment] Uy {Adjustment]

o v
<
epsilon

Fig.3: Flow chart of the FCM code implemented in this project

2.2.3.2. What the influential parameters practically mean or represent,

and how to interpret the clustering algorithm itself:

The weighting exponent m represents the "fuzziness" level. It controls the extent of
membership sharing among the fuzzy clusters. Recall the example of the two clusters,
"desks" and "chairs" in chapter3.1; In a hard c-means clustering environment (m — 1) each
object can either belong to "chairs" or "desks", i.e. its membership value is either one or
zero for each cluster. Now, the higher m is, the fuzzier the results will be. Thus, a desk -
. which can also be used as a chair- may get a membership value higher than zero for
belongingness to the chairs cluster. In this sense, m controls the membership values as

following

lim Uy =‘l.

m—o Cc

16

The control parameter epsilon represents the interrupt criterion. It influences the number
of iterations and therefore the accuracy of the algorithm which is the search for ¢ minima.
By making epsilon smaller we get more accurate clustering results, but also more
computing time, which is not important in this specific case.

The algorithm primarily gives us after each iteration new cluster centers ¥, and new
membership values Uy, . It then calculates the spatial distances between each data element
and the found cluster centers then checks the interrupt criterion. If these distances are
small enough, the algorithm will eventually give us the best membership values and the
appropriate cluster centers. At this point, the search for an internal structure within the
polygraph data -the original intention of every clustering process- will be finished.

FCM algorithm belongs to the so-called partitional clustering algorithms which generate a
fuzzy c-patition matrix in a feature space. In this project I set the number of clusters c, as a
known parameter, equal to two. It can otherwise be a part of the clustering optimization
itself This decision was made after running some initial tests with ¢=3 as well, which
represents "deceptive", "truthful" and "ambiguous" clusters.

initialized after the first
data iteration

clustered
data

¥ ++

*

*o%k + +
* +

* X+ +

oo =>

% : non-deceptive elements
+ = deceptive elements

Fig.4: Fuzzy C-means algorithm applied on polygraph data

17

2.2.4. Why LMS fuzzy adaptive filter?

Filters are information processors. In practice, information!! usually exists in two different

modes:

o Numerical data associated with the problem,
« linguistic descriptions of human experts
(often in the form of fuzzy IF-THEN rules)

Conventional filters can only process numerical data, whereas expert systems can only
make use of linguistic information, ie. a successful pattern recognition system in
conventional form can only be guaranteed where either linguistic rules or numerical data
do not play a critical role. Recall the fact that even in those cases we decide for a
numerical method, we use linguistic information, consciously or unconsciously, in the
choice among different filters, the evaluation of filter performance, the choice of the filter
orders, the interpretation of filtering results, and so on.

The LMS!2 fuzzy adaptive filter is a new kind of nonlinear adaptive filter which makes use
of both linguistic and numerical information concerning the physical characteristics of the
polygraph data in their natural form. This filter is constructed from a set of changeable
fuzzy IF-THEN rules, i.e. we have the choice of setting the rules according to our
experiences and incorporating them directly into the filter, or initializing the rules
arbitrarily; similar to the polynomial, neural nets, or radial basis function adaptive filters.

2.2.5. LMS fuzzy adaptive filter and its interpretation:

2.2.5.1. Filter code - An adaptive procedure

As stated before, this filter is constructed from a set of changeable fuzzy IF-THEN rules
by matching input-output pairs through an adaptation procedure. The adaptive algorithm
updates the parameters of the membership functions which characterize the fuzzy concepts

in the IF-THEN rules by minimizing a criterion function.
Consider a real-valued vector sequence [x(k)] and a real valued scalar [d(k)]. The adaptive
filter f,: U = R is to determine, such that L = E[(d(k)- f; (g(k)))z] is minimized.

11 About the pattern of the subject to be studied.
121 MS = Least Mean squares

18

With k£ =1,2,3,... and x(k) eU =[C;,C 1x[C;,Cy 1%+ x[C,,C;1cR". U and R are

the input and output spaces of the filter, respectively.
The following steps describe the LMS fuzzy adaptivé filter!3 used in this project:

Step 1: M fuzzy sets F' are to be defined in each interval [C7,C7] of U with the

following Gaussian membership functions

—_\2

1{ x —x

x.)=exp| ——| +——-
My (X;) =exp 2(p]

i

where I=12,..,M,i=12,...,n, x, €[C;,C]], and x—,' and a,.' are free parameters which

will be updated in the LMS adaptation procedure of Step 4.
Step 2: A set of M fuzzy IF-THEN rules is to be constructed in the following form:
R: IFx isF'and ... x,is F,, THENdis G',
RM: IFx, is £ and ... x,, is FM THENdis G¥.

where x = (x},...,X) €U, d eR, F"s are defined in Step 1, and G''s are fuzzy sets

defined in R. The (parameters of) membership functions Ky and p, in these rules will

change during the LMS adaptation procedure of step 4. Therefore, the rules constructed
in this step are initial rules of the fuzzy adaptive filter.

Step 3: The filter f,: U — R is constructed based on the M rules of the Step 2 as

follows:

M n
29'(Hﬂﬁ, (x.-))
L@ =5
ST a0)
i=1

=1

where u_,'s are the Gaussian membership functions of Step 1, and @’ €R is any point at
1

which p, achieves its maximum value.

13This algorithm is suggested in [Wang1993] and [Wang1994].

19

Because we chose the membership functions to be Gaussian functions which are nonzero
for any x, €[C,” ,C+] the denominator of the last equation is nonzero for any xel.
Therefore, the filter f, is well defined, and because the 6" as well as x' and o, are free

parameters, this filter is nonlinear in the parameters.

Step 4: The followmg LMS algorithm [Widrow1985] is used to update the filter
parameters 6', x| and o;. With the initial 8 '(0), x!(0) and o/ (0) values determined in

Step 2, the adaptive procedure is as following:

918)= /1) s o)~ £} 5

S08) = ¥k —1)+ el (k) - fk]—((ifi*- (-1)

k-1)

o' (k)= o' (k-1)+ofd(k)- fk]__((_k)_l)_f_k (k- 1)(x,»(k

za’a’(k 1)
n k k-1
where al(k-l)=Eexp[(X,()i (: (1)))2] b(k-1)= Za (k-1), f, = b(k-1)

and« is a small positive step-size. These equations are obtained by taking the gradient of

L ignoring the expectation E (see chapter 2.2.5.1).

2.2.5.2. Influential parameters - meanings & interpretations:

The LMS algorithm is a gradient algorithm, i.e. a good choice of initial parameters é', x!
and o is very important to its convergence concerning accuracy and time. Since the error
measure of this "back-propagation" algorithm is an extremely complicated function of all
the parameters 8, x_,' and o/, it can have numerous local minima. Depending on the
initial parameter estimates, this algorithm always leads to the nearest minimum, i.e. it can
become stuck in a local minimum of the error measure.

Recall that this filter is constructed based on linguistic rules from our previous experiences

and some arbitrary rules. Both sets of rules are updated during the LMS adaptation
procedure of Step 4 by changing the parameters in the direction of minimizing L.

20

In other words, the adaptation procedure can be directed to the local minimum we want
(i.e. accuracy factor) and can converge quickly (i.e. time factor).

if these rules provide good instructions for how the filter should perform, that is, good
description of the input-output pairs [x(k);d(k)].

The updating parameters 6’ [Mx1], x_,.'[Ivbd\I] and o/ [MxN] represent output means, input
means and the input width of the Gaussian distributed data, respectively. The scalar output
d is basically the label!4 of the test data[1xN] in numerical form, and o; describes how far
the data from the output mean can be and still be assigned to it in an appropriate fuzzy
form. M represents the number of the rules and N the number of the features, i.e. the
dimension of the data. The parameter « is the "learning factor" or the step-size of training.

It represents how fast and how smooth the training process proceeds.

\'4
polygraph \[; labels
Sata ,l Sfuzzifier LMS adaptive filter

/N
conventional
initialization

Fig.5: The LMS fuzzy adaptive filter used in this project

14" deceptive" or "non-decptive"”.

21

§3. APPROACH
3.1. Part I - FCM

3.1.2. Initial stage (conditions and methods):

A primary component of every pattern recognition problem is feature extraction. And this
is actually one of the most important and influential tasks for any successful approach.

In previous researches [Layeghil993,1] [Jacobs1993] [Dastmalchi1993], students have
already investigated a set of 669 features for each polygraph test session. They used these
features to train, optimize and eventually classify the data by a fuzzy K-Nearest Neighbor
algorithm (KNN).

In this project, I have used these same features in their original form. I have also selected
their best features and feature combinations for initial tests of my algorithm and for
comparison between fuzzy-CM, fuzzy LMS adaptive filter and the fuzzy KNN approach.
At this point, the question of consistency and transferability of the features - independent
of the algorithm - became more significant. It turned out to be one part of this research!’.

session #1 session #100

Fig.6: An example for a set of polygraph data as a matrix
and its features used in this study

As mentioned earlier, each feature (total number=960) is extracted for all polygraph test
questions, that is for relevant, irrelevant and control questions. It was, however, decided

15See also chapter 4.1.2.3.

22

not to use irrelevant questions in this study, because in a Controlled Question Polygraph
Test comparison between the responses to relevant and control questions is the actual and
most important factor.

Use control
and relevant
seperately

i

Subtract the
normalized averages

Different
methods of
combining the
Seatures

Subtract the average.r]—)

Compare
control & relevant

Subtract maximum
Jfrom maximum

T T

J/

——)[Divide the averages
7

Fig.7: The original feature combinations

Use control,
relevant and
irrelevant

The Total number of the features for every test session at this stage is 669. Each set
contains the same non-deceptive files but different deceptive ones. For more specific
details about how the feature extraction was processed, and about combination methods
which narrowed the total number from 960 to 669, see the references mentioned above.

3.1.3. Clustering stage

3.1.3.1. One-dimensional search and selection of the "best" single features:

After implementation and initial tests of the FCM-code, I began with the one-dimensional
clustering (using one feature for all sessions). I used three sets (polydat_1, polydat 2,
polydat_3) of such structured data as shown in Fig.42 containing 100 data elements, i.e.
50 truthful and 50 deceptive files. With these data, we ran 669 one-dimensional clustering
searches containing 100 different one-dimensional data points at each time. As a result, we
attained 669 times 2 clusters for each polydat_i.

23

After running these tests and evaluating them, I decided to select four sets of "best" one-
dimensional features out of each polydat i in preparation for the multi-dimensional
clustering search. This decision was necessary to narrow the number of features, since it is
impractical to find the best combination (concerning the quantity and the quality)'¢ out of
this immense number of features by an exhaustive way of searching.

For example, chosing only 4 or less feature-tuples from a set of 669 by trying all the
possible different combinations needs the following number of computations:

4 (669 4 |
i=q\ 1 i = 111(669-1)!

The other challenge while finding good feature combinations is the problem of single
features which yield poor results by one-dimensional clustering, but when used in
combination with other features yield very good!” results.

To narrow the amount of possible features, I decided to select the following four sets of

single features with different performances.

percentage of right detections in
deceptive files non-deceptive files
group 1 2 60% & > 60%
group 2 > 80% & 2 50%
group 3 > 50% & > 80%
group 4a > 98% & no constraints
group 4b no constraints & > 98%

Fig.8: Selected features by using one-dimensional FCM

The threshold of 60% was chosen, because any other value below or above that limit
would again give us either too many or not enough features. Furthermore, any other value

16That means: How many features and which ones should be taken in a combination.
17"Good" or "poor” in sense of the definition in chapter 1.1.2.

24

closer to the limit 50% for both deceptive and non-deceptive files would be only a random
clustering process. Yet, this decision was not enough. We would have lost some good
features which provide correct detections - better than 80% - for at least one of the files.
The fourth group was chosen to enable us to consider some extreme cases.

As an additional set of one-dimensional features, I chose those with good results in multi-
dimensional tests!® for one of the polydat_i's, and used them also for the other two
polydat_i's, even though they didn't belong to one of the four feature sets mentioned
above. This set was important to fulfill the constraint of consistency and transferability for
any chosen polygraph data?®.

18Gee chapter 3.1.3.2.
19See the comparison in chapter 4.1.2.3.

25

ft_#

1.0000
2.0000

3.0000
4.0000

5.0000
6.0000
7.0000

8.0000

9.0000
10.0000
11.0000
12.0000
13.0000
14.0000
15.0000
16.0000
17.0000
18.0000
19.0000
20.0000
21.0000
22.0000
23.0000
24.0000
25.0000
26.0000
27.0000
28.0000
29.0000
30.0000

447.0000
448.0000
449.0000
450.0000
451.0000
452.0000
453.0000

662.0000
663.0000
664.0000
665.0000
666.0000
667.0000
668.0000
669.0000

w-dep
#
12.0000
37.0000
16.0000
12.0000
15.0000
38.0000
48.0000
22.0000
22.0000
22.0000
0

20.0000
46.0000
22.0000
12.0000
37.0000
16.0000
12.0000
15.0000
38.0000
48.0000
12.0000
10.0000
21.0000
18.0000
24.0000
12.0000
46.0000
18.0000
12.0000

17.0000
7.0000

16.0000
12.0000
13.0000
5.0000

18.0000

27.0000
16.0000
21.0000
31.0000
34.0000
25.0000
15.0000
15.0000

dcp-ok
%
76.0000
26.0000
68.0000
76.0000
70.0000
24.0000
4.0000
56.0000
56.0000
56.0000
100.000
60.0000
8.0000
56.0000
76.0000
26.0000
68.0000
76.0000
70.0000
24.0000
4.0000
76.0000
80.0000
58.0000
64.0000
52.0000
76.0000
8.0000
64.0000
76.0000

66.0000
86.0000
68.0000
76.0000
74.0000
90.0000
64.0000

46.0000
68.0000
58.0000
38.0000
32.0000
50.0000
70.0000
70.0000

w-non
#
9.0000
44.0000
10.0000
18.0000
16.0000
27.0000
0
9.0000
8.0000
11.0000
33.0000
15.0000
26.0000
11.0000
9.0000
44.0000
10.0000
17.0000
16.0000
27.0000
0
14.0000
45.0000
15.0000
24.0000
19.0000
23.0000
2.0000
9.0000
10.0000

36.0000
40.0000
11.0000
9.0000

18.0000
20.0000
18.0000

34.0000
30.0000
37.0000
23.0000
17.0000
28.0000
37.0000
39.0000

non-ok
%
82.0000
12.0000
80.0000
64.0000
68.0000
46.0000
100.000
82.0000
84.0000
78.0000
34.0000
70.0000
48.0000
78.0000
82.0000
12.0000
80.0000
66.0000
68.0000
46.0000
100.000
72.0000
10.0000
70.0000
52.0000
62.0000
54.0000
96.0000
82.0000
80.0000

28.0000
20.0000
78.0000
82.0000
64.0000
60.0000
64.0000

32.0000
40.0000
26.0000
54.0000
66.0000
44.0000
26.0000
22.0000

iter_#

13.0000
15.0000
14.0000
15.0000
16.0000
15.0000
40.0000

8.0000
13.0000
38.0000
26.0000

6.0000
10.0000
16.0000
27.0000
17.0000
25.0000
37.0000
40.0000
34.0000
31.0000
25.0000
20.0000
23.0000
29.0000
18.0000
22.0000
35.0000
28.0000
14.0000

17.0000
25.0000
15.0000
15.0000
20.0000
13.0000
12.0000

9.0000

9.0000
17.0000
14.0000
45.0000
20.0000
12.0000
11.0000

=669

Feature number: ft_#

of wrong results in decept. data: w-dep
% right detection in decept. data: dcp-ok
of wrong results in truthful data: w-non
% right detection in truthful data: non-ok
Iterations_# for each feature: iter_#

Fig.9: An example for one-dimensional clustering

26

ft_#

1.0000
3.0000
4.0000
5.0000
12.0000
15.0000
17.0000
18.0000
19.0000
22.0000
29.0000
30.0000
31.0000
33.0000
36.0000
37.0000
38.0000
39.0000
40.0000
50.06000
52.0000
68.0000
70.0000
82.0000
141.0000
155.0000
176.0000
177.0000
197.0000
200.0000
211.0000
214.0000
216.0000
235.0000
395.0000
449.0000
450.0000
451.0000
452.0000
453.0000
458.0000
459.0000
460.0000
462.0000
600.0000

w-dep
#
12.0000
16.0000
12.0000
15.0000
20.0000
12.0000
16.0000
12.0000
15.0000
12.0000
18.0000
12.0000
14.0000
18.0000
15.0000
8.0000
12.0000
14.0000
16.0000
17.0000
15.0000
13.0000
20.0000
16.0000
17.0000
17.0000
16.0000
16.0000
13.0000
17.0000
13.0000
17.0000
15.0000
15.0000
18.0000
16.0000
12.0000
13.0000
5.0000
18.0000
16.0000
20.0000
14.0000
14.0000
18.0000

dcp-ok
%
76.0000
68.0000
76.0000
70.0000
60.0000
76.0000
68.0000
76.0000
70.0000
76.0000
64.0000
76.0000
72.0000
64.0000
70.0000
84.0000
76.0000
72.0000
68.0000
66.0000
70.0000
74.0000
60.0000
68.0000
66.0000
66.0000
68.0000
68.0000
74.0000
66.0000
74.0000
66.0000
70.0000
70.0000
64.0000
68.0000
76.0000
74.0000
90.0000
64.0000
68.0000
60.0000
72.0000
72.0000
64.0000

w-non
#
9.0000
10.0000
18.0000
16.0000
15.0000
9.0000
10.0000
17.0000
16.0000
14.0000
9.0000
10.0000
16.0000
16.0000
8.0000
13.0000
14.0000
13.0000
15.0000
17.0000
20.0000
18.0000
20.0000
20.0000
17.0000
17.0000
18.0000
16.0000
17.0000
13.0000
16.0000
12.0000
14.0000
19.0000
17.0000
11.0000
9.0000
18.0000
20.0000
18.0000
14.0000
10.0000
18.0000
17.0000
20.0000

non-ok
%

82.0000
80.0000
64.0000
68.0000
70.0000
82.0000
80.0000
66.0000
68.0000
72.0000
82.0000
80.0000
68.0000
68.0000
84.0000
74.0000
72.0000
74.0000
70.0000
66.0000
60.0000
64.0000
60.0000
60.0000
66.0000
66.0000
64.0000
68.0000
66.0000
74.0000
68.0000
76.0000
72.0000
62.0000
66.0000
78.0000
82.0000
64.0000
60.0000
64.0000
72.0000
80.0000
64.0000
66.0000
60.0000

iter_#

13.0000
14.0000
15.0000
16.0000

6.0000
27.0000
25.0000
37.0000
40.0000
25.0000
28.0000
14.0000
21.0000
14.0000
14.0000
15.0000
18.0000
17.0000
13.0000
18.0000
23.0000
17.0000
23.0000
12.0000
15.0000
25.0000
13.0000
13.0000
15.0000
12.0000
42.0000
27.0000
32.0000
14.0000
10.0000
15.0000
15.0000
20.0000
13.0000
12.0000

8.0000
10.0000

9.0000

7.0000

37.0000

=45

Feature number: ft_#

of wrong results in decept. data: w-dcp
% right detection in decept. data: dep-ok
of wrong results in truthful data: w-non
% right detection in truthful data: non-ok
Iterations_# for each feature: iter_#

Fig.10: An exmple for the first group of selected features
(representing group #1 at page)

27

3.1.3.2. Multi-dimensional search for the best feature combination:

3.1.3.2.1.0verview:

Having obtained these four sets of features, a multi-dimensional searching process through
all of them was initiated to find the best feature combinations (concerning the quantity and
the quality?9).

Even though the number of the features?! has already been narrowed, it is still impractical
to do an exhaustive search, since the total number of the features contained in these four
sets is about 100 for each polydat i. In other words, the following number of
computations is still needed for calculation of all 4 or less possible feature-tuples:

4 (100 4 !
p (A)= Yy —/ 100', ~4.0-10° .
i=1 1 l=11‘(100—1)'

At this stage, I decided to investigate 3 different search methods to bypass the exhaustive
way. They are

1. random search without duplication of any feature within a tuple,
2. pseudo-exhaustive search with the option of duplication and finally
3. genetic search with "uncontrollable" possibility of duplications.

In previous research projects [Layeghi1993,1] [Dastmalchi1993] [Jacobs1993], it was
decided to narrow the feature numbers from 669 to 30 "best" ones and then an exhaustive
search was run for up to four- or five-tuple combinations. In other words, their strategy
was completely different than the aforementioned three strategies.

As mentioned before a "poor" or an average single feature by one-dimensional clustering
might give us in combination with other features very good or even better results by a
multi-dimensional clustering than any of them individually.

This fact was totally neglected by the feature selection methods used in the previous
researches?? [Laueghi1993,1] [Dastmalchi1993].

20That means: How many features and which ones should be taken in a combination.

218ee chapter 3.1.3.1.
22ee chapter 4.3. comparison for more details about differences between this and previous works.

28

Applying these three new strategies, I was able to consider more possible features for a
multi-dimensional clustering than in previous works, without using the impractical

exhaustive method.

polygraph data
ft 1
ft 2 s - "
f 3 ; one-dimensional
N FCM-clustering
ft_ 669/ ft_669 g
A\
session #1 session #100 feature selection

VvvVvYVY VY

feature combination\

[random search]

]
best feature combination < (pseudo-exhaustive search]
I

[genetic search |

multidimensional

_ FCM

Fig.11: General search to find the best feature combination

3.1.3.2.2. Random search method:

Applying this method, an average of 14 to 20 different features out of the aforementioned
four sets were taken, and then the FCM algorithm including the evaluation program for
randomly chosen 4-tuples were run. After about 1000 combinations were constructed, I
then picked out the best features and their combinations, and replaced the poor ones with
new features. This same procedure was repeated until good?* combinations were found.

23"Good" in sense of the definition in chapter 1.1.2.

29

Every time the results were out of balance - i.e. highly better detection either for deceptive
or non-deceptive files by the cost of the other one - I appropriately took additional
features from those four sets to eliminate the difference by improving the results of the
worse file - and as much as possible - by maintaining the results of the better file.

After running this kind of tests several times, we were able to estimate which features are
the good ones to combine together.

3.1.3.2.3. Pseudo-exhaustive search method:

Having some idea?* which features are good in a combination with others?%, I built every
possible four- to six-tuples out of those features and evaluated them. This method was
very important to make sure that we did not lose any good combinations which might
have been neglected by the random search.

I called this method "pseudo"-exhaustive, because each time it considers only a small part
of the available features; but "exhaustive”, because it takes all the possible combinations
within this part. Except for this major difference, all the other steps of this method are

exactly the same as the random search.

3.1.3.2.4. Genetic search method:

This algorithm is basically a compromise between the pseudo-exhaustive and the random
search method, plus a weighting system which supports those features with good results.

Initial populations of 200 to 300 chromosomes?¢ are randomly created. Each chromosome
is a combination of N features, where N stays constant for each population during the
outgrowth. Each single feature is selected from a gene pool for the particular population
that the individual belongs to. Each gene pool consists of twenty to forty features that we

have chosen?’.

24By using the results of the random search method and also the 5th group mentioned at page 3.1.3.1.

25Remember the fact that some "poor” single features might give us in combination with others very
good results

26Individuals or feature-tuples.

27Directed by our experience from using the random and the pseudo-exhaustive methods.

30

In this project three processes operate on the evolution?® of each population:

o reproduction
e crossover

e mutation.

These three processes determine how each new generation will be created based on the
old one. Before genetic reproduction, the fuzzy-c-means algorithm evaluates the
percentage of correct deceptive and non-deceptive detections for each chromosome. The
average of them is the fitness value of that chromosome. During the genetic reproduction,
the chromosomes of the new generation are copied from the chromosomes of the old
generation in a probabilistic sense. The probability that a particular chromosome will be
copied is the ratio of that chromosome's fitness value against the total fitness values of the
entire population of the old generation.

After selection, genetic crossover randomly chooses pairs of chromosomes as parents,
splices them, and recombines them - by randomly mixing some of the parents genes - into
pairs of offsprings. Finally, genetic mutation randomly substitutes a new gene within a
randomly chosen chromosome. The extent to which crossover and mutation occur can be
verified by appropriate initialization.

N Y N ™™ N ™™ ™™
* {1x %] * * | |1%x 1% |* g bdk | [* | lxixiixe]I*x]|]*]*
* {1k | 1% | |* x| x| % |i* R R AR R R AR AR R
x| 1% | 1% | |* * | 1%] 1% ||* * | j% | {* Al 1% X i*x{1*]|*
&)) e) b)) b) b)G B BB B b b

~— = r—'\ N N N
% | x| x| |* * []%] |*] I* * | jxfx]|* * [1%] 1*%||*
% | 1% | |% | * * | I% 1 * | i* * |1 (*]* * | |*] 1*x|*
% | 1% | |* | % x| |x 1% | % * | 1% 1% | |* * | 1% {1% | [*
k)) &)) &)) & xJ k))&) & &) &

reproduction crossover mutation

Number of feature tuples: 300
Number of features in each tuple: 4

Fig.12: An example for the genetic outgrowth with
4 genes (=features) in each chromosome (=individual)

28Gee chapter 4.1.2.2 for particular results of this method.

31

3.1.3.3. General process - Optimization by changing parameters:.

Simultaneously to the search for the best features and their combinations, we were
optimizing the system by changing and adjusting the parameters. Recall, the whole idea of
this pattern recognition was to cluster the unlabeled data into two clusters which represent

the deceptive and the truthful group?.

Knowing the information of which files were deceptive or truthful30, we were able to
change the parameters in the way that the output could continuously come closer to the
real cluster structure. This process is depicted in the following figure. The "fuzzy c-means
algorithm" block not only represents the pure FCM algorithm shown in Fig.3, but also the
general search for good features shown in Fig.11 which ran simultaneously with the

optimization process.
polygraph test
data non-deceptive cluster
defuzzification
hard

deceptive cluster

+ U.
fuzzy c-means ik
(algorithm '
AN defuzzification [~J
parameters soft ik

S, non-deceptive cluster
evaluation deceptive cluster
— membership values

/N

Fig.13: Optimization of the clustering environment
- General process -

As an example, I will briefly discuss how the parameter m was chosen and eventually
modified: The weighting exponent m plays a significant role in this system. Since the
control parameter m itself does not belong to the optimizing values within the iterative
process of FCM algorithm, one must choose m before implementing the algorithm, and

29See chapter 3.1.2.
30We know this information beforehand for sure, because the subjects have confessed their case or the

actual offender was found.

32

optimize it manually. There are several research papers written as an attempt to find the
optimal m for different clustering problems.

The effect of m was discussed in [Bezdek1981]. Although Bezdek proposed heuristic
guidelines for m, no theoretical basis for an optimal choice for m has been reported. The
only known paper in this matter [Choe1992] proposed a method for determining m based
on the concept of fuzzy decision theory initiated by [Zadeh1970].

But since the definition of "good" clusters in [Choe1992] did not exactly match to our
clustering environment, I chose the "trail and error" strategy to find the optimal m by
systematically increasing it. Fortunately, there is a logical limit®! for this increasing process
in our case, even though m can mathematically be any value from [2,).

091 . . .‘
08L + o
0.7 °
0.6/) - T

0.5

Membership values

0.4

-+

03l H 4 g4t + N
. -

0.2 +h o+ 4

0.1 e+ i]

0 g 40 80 80 700
Polygraph sessions

" " represents the mmebership values for m=2
"+" represents the membership values for m=5

Fig.14: An example for the influence of 'm'

31Gee chapter 2.2.3.2. for the meaning of 71.

33

For more details on this matter see the chapter 4.1.1. In Fig.14, you see an example for
how the weighting exponent m influences the membership values for one of the features
from polydat_3 in one-dimensional mode.

3.1.3.4. Evaluation strategy:

Due to the small number of non-deceptive cases available, each session for a subject was
used as a separate and individual case. But in average, each group of three sessions belong
to one person concerning the same crime, meaning the results of these sessions are not
independent of each other. Using this additional information, the clustering system can
come closer to the actual structure of the data, i.e. we can get a better performance.

polygraph examination for a deceptive subject

/session #1 session #2 session #3\

® ®)

&
C]

®

® © | @

3]
=)
13|
=)

4 4

Knon-deceptive deceptive decepti\y

: Control question deceptive
@ : Relevant question

Fig.15: An example for the final evaluation using the
dependency of the sessions

34

After clustering and evaluating?? each session separately, some cases with different
responses to the algorithm were found, although they belonged to one person. In
circumstances like this, we combined the individual results within each group in a way that
the majority response was assigned to the whole group (see Fig.15).

In those cases that each polygraph examination contains 2 or 4 test sessions where there is
no majority response to build, I decided to take only those membership values further to
the threshold 0.5. For example, by the feature combination [30, 30, 39, 235, 363, 450]
used to cluster polydat_1, we obtained for one of the examination with four sessions the
following membership values: 0.4164, 0.5519, 0.5377, 0.4780. After defuzzification we
got 0, 1, 1, 0 where no majority class can be build. However, the second and the third
membership values are closer to the threshold than the other two ones. With the
aforementioned strategy, this examination is labeled with 0.

Recall that each polygraph examination has a set of control and relevant questions which
is repeated an average of three times. The only difference between each session is the
order in which the questions are asked.

32The general evaluation process is contructed as following:

After each clustering procedure (one- or multi-dimensional) a two-row vector of membership values is
given which represent the two deceptive and non-deceptive clusters. The evaluation process takes the
membership values of one these clusters and counts the values below and above the threshold 0.5. Thus, as
a result we get the absolute number of wrong and right detections.

35

3.2. Part II - LMS fuzzy adaptive filter

3.2.1. Feature selection by visual inspection:

One advantage of a fuzzy logic system is its use of common sense human reasoning as
inference rules. The fuzzy LMS algorithm we used extends this advantage by further
optimizing such inference rules to "fit" a given set of data. To fully utilize the advantages
of this fuzzy LMS algorithm, we had to face two issues: coming up with the proper
intuitive rules for initialization and a set of data that reflects real-world examples for

training.

As mentioned before, for practical reasons, the polygraph recognizer can use only a subset
of the given 669 features, and we would have to choose the effective ones. Furthermore,
the fuzzy logic system needed reasoning rules, operating on those features we selected, to
analyze the data. We believed that we could visually inspect graphical plots of the feature
data to learn about the feature information. Since fuzzy logic corresponds closely with
human reasoning, we would then, based on the knowledge obtained from our visual
inspection, select features that help differentiate deceptive and non-deceptive subjects and
codify the patterns we would find into reasoning rules.

For the visual inspection, a scatter plot was made of the data in polydat_3 of each single
feature. We looked at each plot individually. In any given plot, if the deceptive and non-
deceptive subjects showed distinctive clusters, then the feature was considered good. If
the elements of these two classes seemed to be randomly located, then the feature was
considered bad. After viewing all 669 plots, we subjectively determined the following
features?3 to be very good: 9, 11, 29, 164, 399, 449, 450, 451, 452, and 454; with 451 and
452 to be the best.

Initially the fuzzy adaptive filter was to be designed based on two features, with more
features to be added in the future as the project progresses. We limited the feature couple
to be composed of good features from the above list. Visual inspection was made of the
scatter plots of the data in polydat_3 of various such feature combinations to determine
the effective ones. While selecting feature couples, we again searched for combinations
that show distinctive clusters for deceptive and non-deceptive subjects. The features

33See Fig.41 for the meaning of these numbers.

36

within a combination should also be uncorrelated with each other. A plot of the feature
449 and 450 combination shows that they are a bad couple because they seem to be
linearly correlated34, as the data points fall closely along a straight line.

15 L .. _
- :*_ *
1L -]
§ .
3 -
(4 .
[05 +
2 - R . T
'g . ._h:*_‘.:b: -+
0L F"} .
—+—-*--1‘—¢ :
05 | + B
+ 4+ -+
; + T o4+ g
AL + |
4 +
-1.5) ; . , ;
-1.5 -1 05 0 05 1 15
feature # 449

'+ non-deceptive files
‘0" deceptive files

polydat_3

Fig.16: Scatter plots of two linearly correlated features

Visual inspection of feature couples consumed much more time than visual inspection of
individual features, as the clusters took on more complicated shapes. Furthermore, in the
fuzzy LMS algorithm each inference rule exerts influence centered in an elliptical contour
where the major and minor axes are parallel with the axes of the feature plot. Clusters with
a complicated shape must be built from those elliptical regions (see next figure). Therefore
we had the additional task of finding clusters in the feature plots that could be easily
approximated with few ellipses, to reduce system complexity.

Due to the lack of time, we did not examine the plots of all forty-five possible
combinations of the ten very good features listed above. We only examined a random few.
Based on the ones we did examine, we settled on the combination of features 451 and 452
because:

34Correlation between two features means that information in one is similar to the information in the
other one, and using them together only introduces redundancy and hardly improves the system.

37

* they were the best - visually recognizable - features individually,
* they seemed uncorrelated with each other and
« we roughly found four elliptical clusters from the plot.

05 |

feature # 452
o

05 L

-1 L

-2 A5 K] 05 0 05 i 5 2
feature # 451

"+ non-deceptive files

‘0" deceptive files

Polydat-3

Fig.17: The four elliptical clusters used for setting the linguistic rules

38

3.2.2. Setting linguistic rules:

We initialized the fuzzy system such that it would exploit the knowledge we had just
obtained about the clusters for features 451 and 452. There were two inputs, one for each
feature, and four rules, one for each cluster. We had to represent those visual clusters we
found with inference rules. The linguistic rules are shown in the following figure.

1. IF f1 is about -1 (+0.5) and f2 is about -0.5 (+0.8),
THEN decision is non-deceptive => output is +1.

2. IF f1 is about 0 (£0.5) and f2 is about -0.25 (+0.25),
THEN decision is non-deceptive = output is +1.

3. IF f1 is about 0 (+0.1) and f2 is about 0 (£0.2),
THEN decision is deceptive = output is -1.

4. TF f1 is about 1 (+0.6) and f2 is about 0.3 (£0.5),
THEN decision is deceptive = output is -1.

[1: measurement of feature # 451
J2: measurement of feature # 452

Fig.18: Initial linguistic rules for the fuzzy adaptive filter
based on the clusters in Fig.17

The linguistic rules above were then translated to fuzzy membership functions as outlined
in [Wang1994]. The xi's were the centers of the clusters; the sigmas were the widths of the
clusters (+£xxx in the above rules); and the thetas were either +1 or -1 for non-deception

and deception, respectively.

The output of the fuzzy reasoning based on the above four rules would not be exactly +1
or -1. It would be within the range limited3® by +1 and -1. For our project, we decided
that a positive output denotes non-deception and a negative output denotes deception. In
other words, the decision threshold was at zero.

35 After training the output may go beyond that range.

39

For future investigations one may experiment with a different threshold*.

The choice of plus and minus one for non-deception and deception is based on the
following argument: The learning technique uses the squared error, which is the square of
the difference between the desired output and actual output. In computing that squared
error, if the difference between the desired output and actual output is greater than one,
then the squaring operation expands the error value and therefore gives more significance
to such mistakes. On the other hand, if the difference is less than one, than the squaring
operation compresses the error value and therefore gives it less significance.

Given zero as the threshold between deception and non-deception and assuming the actual
output would never go beyond plus two or minus two, then the choice of plus and minus
one as desired outputs would mean that the error calculation gives more significance to
misclassifications and less to correct classifications; Here classification refers to the crisp,

defuzzified classification, not the degree of belonging.

For example, the desired output for non-deceptive subjects is plus one. If the actual output
is between zero and two, then the crisp classification is non-deception, which is correct.
The numerical difference between the actual output and the desired output is less than one
in this case, and the squaring operation would lessen the significance of that error. On the
other hand, if the actual output is less than zero, then the crisp classification would be
deception, which is wrong. In that case, the numerical difference between the desired
output and the actual output is greater than one and more significance would be given to
such mistakes. Similar argument can be apply for the choice of minus one as the desired
output for deceptive subjects.

3.2.3. Training, testing and evaluation strategy:

The fuzzy LMS algorithm can be optimized to a specific set of data. To exploit that aspect
of the algorithm, we also selected a set of data to train the system. Following a procedure
similar to one used in an earlier project with KNN classifying algorithm [Layeghi1993],
we had 35 deceptive subjects and 35 non-deceptive subjects - from each polydat i - for

360ne may also view the output as a fuzzy value and map it to a confidence value in addition to just a
deception/non-deception decision. That would differentiate a sure judgment from an unsure one and may
be more helpful in practice.

40

training. However, with a set of only 100 subjects within each polydat_i, that left a rather
small amount for festing (i.e. 15 deceptive and 15 non-deceptive subjects). Therefore we
also tested the algorithm with 10 deceptive subjects and 10 non-deceptive subjects for
training and the rest (40 deceptive subjects and 40 non-deceptive subjects) for testing.
That might be a bit extreme in the other direction, but we could interpolate the results and
also see the sensitivity of the algorithm to the amount of training data.

We tested both cases for all three polydat_i's, giving a total of six tests. Each test was
repeated twenty times. The training data were randomly chosen each time, and the rest of
the available data in each set were used for testing. We recorded for each test the average
of those twenty trials. This repeated testing was done to ensure that the results were not
dependent on a particular choice of training data.

41

3.2.4. What to do with the memorizing problem?

Most learning algorithms suffer the dilemma of overlearning, or memorizing. Usually the
problem occurs when the learning algorithm tries too hard at optimizing itself to a set of
training data, sometimes to the point of memorizing them, such that it does not generalize
to understand new data. Overlearning is exacerbated when the training data set is not
completely representative of the testing set.

In a pattern recognition problem, while the recognition rate for the training data may
increase steadily until it reaches a certain plateau, the recognition rate for testing data may
only increase for a while, after which it may decrease until it hits a plane. We observed

such phenomenon in our system:

085 | training data
2
[
c 08 L .
2
=
c
g
§ 075 L 4
07 L 4
065 L testing data -
0.6 L 1 1 1 _L I 3 L
5 10 15 20 25 30 35 40
: epochs
The training data consist of twenty non-deceptive subjects and twenty deceptive subjects from polydat_3.
The testing data consist of all one hundred subjects from polydat_1.

Fig.19: An example for memorizing as the system "learns"

The point where the recognition rate starts to decrease marks the beginning of
overlearning. In practical applications, most adaptive learning algorithms are trained only
to the point before overlearning occurs, when the performance on the testing data reaches
its peak.

’

42

In our testing we had taken that approach and, for each trial, the percentage of correct
recognition was taken as the maximum attained for the testing data within forty epochs3”.

We disregarded the recognition rate for the training data because for many systems,
including our own, a proper set-up could easily attain a recognition rate of 100%. That is,
the recognition rate of the training data bears little importance in practical applications.

37An epoch is defined as one complete cycle through all the training data.

43

4.1. Fuzzy-c-means

4.1. 1. Searching for the best level of fuzziness (parameter ‘'m’):

One of the major steps during the one-dimensional clustering was the searching process
for the best value of m38. For this process, it was necessary to run the FCM algorithm for
different m's and for different data by increasing m systematically. This was done for all

669 features and for each polydat_i, by every new m.

Recall that it was decided to consider four groups of features to limit the feature pool for
multi-dimensional clustering. Even though the general development - while changing m -
was similar for each polydat i, the individual reaction of these 4 groups within each
polydat_i was a little different. For the final decision, we considered all these variances,
correct detection rates and also the distributions of the membership values for each m.

In the following, I will mention some of the remarkable observations we have made during
this process (see also the following tables and figures representing the results of
polydat_3):

As expected, the membership values U,, did approach the 0.5-level® by increasing m, i.e.
the results became fuzzier. Thus, we had to limit the increasing process to avoid the
uncertainty of the results caused by too much "fuzziness" (which means that every person
belongs to both clusters with almost the same possibility). However, we could observe a
very interesting phenomenon. Even though the membership values came closer to 0.5, and
the distances for different persons to this level were around 107 (with x> 3), they were

still visually recognizable as deceptive and truthful clusters.

See the following two figures and also the Fig.14 for examples. Notice that the first 50
sessions represent the non-deceptive persons and the other 50 the deceptive ones.

§4. RESULTS AND CONCLUSIONS
\
|
\
|
|
|
|
|
|
|
\
|

| 38Gee also chapter 3.1.3.3. for the discussion about finding the best 71.
| 39See chapter 2.2.3.2. for more details.

44

+
09 L + 4
—+
[
S o8| + *]
[1:3
s o7l N L T
s T + v+ 1
2 + +H -+ + 4
€ 061 + =+ -+ + 4+ 4
g * + . + o .
4+ iy -+ O P - o et
R . TSI A o ;T
04| o R £ 4+]
-+ +
-+ + “+ -+
+ +
02} + + H T+ _
4+ + +
0.1 T+ ,
26 b o 80 00
polygraph sessions
" " represents the membership values for m=10
"+" represents the membership values for m=35
Fig.20: Influence of increasing 'm' for polydat-3 session #1
0.58
056 | . i
g
I 054 | . L.
2
® 052 .
2 R . - I .
; : : : °
£ 05 ... M . . . R
048 | -]
046 |) . . ’) 1
044 | .) . _
0.42 A)
20 r1) 80 80 700
polygraph sessions

Fig.21: The zoomed-in view of the above figure for m=10

45

In the following two tables, the influence of changing m (for polydat_3/group #1, as an
example) is depicted. As mentioned earlier this group represents those features which give
us better than 60% right detection for both deceptive and non-deceptive files by one-

dimensional clustering.

As you see in these examples, while increasing the parameter m, new "good" features
appear. Some old ones provide even better detection rates and some get worse or even
disappear. This progress is not unlimited. As you see, the development from 'm=4' to 'm=>5'
is smoother than between 'm=2' and 'm=4' regardless of 'm=3' step. By continuing this
process above 'm=5', the tendency becomes rather negative.

Those features marked with (*) represent a better detection rate than 75% at least in one '

of the two clusters. Notice that these features also change during the increasing process of
m. By continuing this process above 'm=>5', also this tendency becomes rather negative.

After considering the other groups* and their development for each polydat_i, 'm=5'
appeared to be the best compromise. Notice that there is also an outstanding result for
feature number 452 by 'm=>5' (see Fig.23). That was the only inidividual feature ever by an
one-dimensional clustering process with a correct detection rate of 90% for non-deceptive
files.

Another interesting aspect is that independent of m, the conglomeration areas where
"good" features appear are always the same: For example the half of the "good" features

are among the first hundred, but between 200 and 300, there is only one.

In the next tables we will use the following abbreviations:

ft #: Feature number.

w_dcp: Wrong detection within the deceptive cluster in percent.

w_non: Wrong detection within the non-deceptive cluster in percent.

*: Features with a better detection rate than 75% at least in one of the two
clusters.

'm=..." MINUS 'm=...": Represents the difference in detection rates by using different m's.

40See Fig.8.

46

group #1 & m=4

ft#

1.0000
3.0000
4.0000
5.0000
12.0000
15.0000
17.0000
18.0000
19.0000
22.0000
29.0000
30.0000
31.0000
33.0000
36.0000
37.0000
38.0000
39.0000
40.0000
50.0000
52.0000
68.0000
70.0000
82.0000
141.0000
155.0000
176.0000
177.0000
197.0000
200.0000
202.0000
211.0000
214.0000
216.0000
235.0000
395.0000
449.0000
450.0000
451.0000
453.0000
458.0000
459.0000
460.0000
462.0000
600.0000

w_dcp

24.0000
32.0000
22.0000
30.0000
40.0000
24.0000
32.0000
22.0000
30.0000
24.0000
36.0000
24.0000
28.0000
36.0000
30.0000
16.0000
24.0000
28.0000
32.0000
34.0000
30.0000
24.0000
40.0000
32.0000
34.0000
34.0000
32.0000
32.0000
26.0000
34.0000
30.0000
26.0000
32.0000
30.0000
30.0000
38.0000
32.0000
24.0000
24.0000
36.0000
32.0000
40.0000
26.0000
28.0000
36.0000

w_non

18.0000
20.0000
36.0000
32.0000
30.0000
18.0000
20.0000
36.0000
32.0000
28.0000
18.0000
20.0000
32.0000
32.0000
16.0000
26.0000
28.0000
26.0000
30.0000
34.0000
40.0000
36.0000
40.0000
40.0000
34.0000
34.0000
36.0000
32.0000
32.0000
26.0000
28.0000
32.0000
26.0000
28.0000
38.0000
32.0000
20.0000
18.0000
38.0000
36.0000
26.0000
18.0000
38.0000
34.0000
40.0000

* *

polydat_3
'm=2' MINUS 'm=4'

% %
0 -2.0000
2.0000 0
acmmmeeee-nieW feature—-------
2.0000 0
B new feature—-------
0 -2.0000
2.0000 0
B —— new feature—-------
4.0000 0
0 0
0 0
-2.0000 4.0000
-2.0000 0
0 0
0 0
0 4.0000
0 0
-6.0000 4.0000
0 0
2.0000 0
m—mm—eas new featureg—-------
cmmeeeem-nieW feature—-------
-2.0000 0
ememmmm--neW featurg—-------
-4.0000 0
-4.0000 0
—ememe—emenieW feature—--evs--
0 0
0 2.0000
-2.0000 0
0 0
0 0
0 0
0 0
-4.0000 2.0000
—-—--——--new feature: -
0 6.0000
0 2.0000
----- new feature—-------
0 0
6.0000 -2.0000
new feature—------
cmmemeeaa-NiEW fEatUTE—-oveene-
0 0
0 0

for the abbreviations see page 46

Fig.22: Comparison between the results for 'm=2' and 'm=4'

47

group #1 & m=5

ft #

1.0000
3.0000
4.0000
5.0000
12.0000
15.0000
17.0000
18.0000
19.0000
22.0000
29.0000
30.0000
31.0000
33.0000
36.0000
37.0000
38.0000
39.0000
40.0000
50.0000
52.0000
68.0000
70.0000
82.0000
141.0000
155.0000
176.0000
177.0000
197.0000
200.0000
211.0000
214.0000
216.0000
235.0000
395.0000
449.0000
450.0000
451.0000
452.0000
453.0000
458.0000
459.0000
460.0000
462.0000
600.0000

w_dcp

24.0000
32.0000
24.0000
30.0000
40.0000
24.0000
32.0000
24.0000
30.0000
24.0000
36.0000
24.0000
28.0000
36.0000
30.0000
16.0000
24.0000
28.0000
32.0000
34.0000
30.0000
26.0000
40.0000
32.0000
34.0000
34.0000
32.0000
32.0000
26.0000
34.0000
26.0000
34.0000
30.0000
30.0000
36.0000
32.0000
24.0000
26.0000
10.0000
36.0000
32.0000
40.0000
28.0000
28.0000
36.0000

w_non

18.0000
20.0000
36.0000
32.0000
30.0000
18.0000
20.0000
34.0000
32.0000
28.0000
18.0000
20.0000
32.0000
32.0000
16.0000
26.0000
28.0000
26.0000
30.0000
34.0000
40.0000
36.0000
40.0000
40.0000
34.0000
34.0000
36.0000
32.0000
34.0000
26.0000
32.0000
24.0000
28.0000
38.0000
34.0000
22.0000
18.0000
36.0000
40.0000
36.0000
28.0000
20.0000
36.0000
34.0000
40.0000

*

‘m=4' MINUS 'm=S5'

% %
0 0
0 0
-2.0000 0
0 0
0 0
0 0
0 0
-2.0000 2.0000
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
-2.0000 0
0 0
0 0
0 0
0 0
0 0
0 0
0 -2.0000
0 0
0 . 0
-2.0000 2.0000
0 0
0 0
2.0000 -2.0000
0 -2.0000
0 0
-2.0000 2.0000
—---new feature—---

-0 0
0 -2.0000
0 -2.0000
-2.0000 2.0000
0 0
0 0

polydat_3

----feature # 202 is missing----

for the abbreviations see page 46

Fig.23: Comparison between the results for 'm=4' and 'm=5'

48

 4.1.2. Searching for the best feature combination:

4.1.2.1. Results of the conventional methods and general observations:

As mentioned in chapter 3.1.3.2.1, we decided for three different strategies to find out the
best feature combination that can represent the two sought clusters within the polygraph
data.

After a short while of a "trial-and-error" testing with the multi-dimensional clustering
algorithm and achieving some experience about how well which features are in a
combination with others, I decided to start a systematic searching process beginning with
four-tuple combinations. In the followings, 1 will mention some of the general

observations#! we made;

* not always all of the good one-dimensional features were represented
within the best feature combinations,

* good one-dimensional features with the same detection rate did not
provide the same results within coequal combinations,

« some poor or average individual features turned out to be the best
features in a combination with others,

* by repeating some features in a combination, we obtained a few new

good combinations,

» good feature combinations always gave us better results than any of the
features individually and

« the quality of the feature tuple does not depend on the order of the
features within the tuple.

In the following tables, you see an example for using the random search method for
polydat_3 (‘'m=2' and 'm=5'") for four-tuple combinations.

41See also chapter 4.3.

49

feature number = { 1, 4, 3, 9, 22, 29, 30, 36, 37, 39, 450, 457, 458, 460]
condition: if (((nn>=80) & (ww>=80)) | ((nn>=86) | (ww>=86)))

table 1
feature positions right detection feature positions right detection

non-ok dcp-ok non-0k dcp-ok
5 1 7 4 86 78 6 4 8 5 86 68
1 7 3 6 88 72 2 4 10 6 86 68
4 8 5 2 86 76 8 4 1 5 86 70
5 6 8 4 86 68 10 8 2 1 86 72
8 3 4 5 86 72 7 9 3 1 82 80
6 8 13 5 86 68 8 1 6 14 86 70
4 1 6 3 88 70 5 4 2 8 86 76
2 3 6 1 86 74 1 7 8 6 86 70
1 8 5 3 86 72 1 4 8 10 86 72
6 12 13 8 86 68 2 12 8 1 86 76
8 1 4 6 86 70 1 2 4 8 86 76
8 7 6 1 86 70 8§ 1 2 4 86 76
1 8 5 6 86 70 7 3 4 2 86 78
6 3 7 1 88 72 4 1 6 8 86 70
2 6 10 1 86 68 3 6 1 4 88 70
6 10 2 7 86 68 8 1 510 86 72
1 3 6 5 88 70 1 8 2 4 86 76
6 7 3 1 88 72 8 4 13 1 86 70
2 6 4 1 86 72 1 10 2 6 86 68
7 5 1 4 86 78 1 6 3 5 88 70
5 8 1 4 86 70 1 5 8 3 86 72
8 5 13 3 86 72 3 8 2 6 86 72
3 8 6 14 88 70 1 6 3 14 88 70
3 7 4 2 86 78 51 8 2 86 76
8 7 1 6 86 70 1 4 610 86 68
3 1 6 5 88 70 2 5 4 8 86 .76
5 4 8 2 86 76 2 6 10 1 86 68

feature number = {1, 4, 3, 8, 9, 18, 22, 29, 30, 36, 37, 39, 81, 457}
condition: if (((nn>=80) & (ww>=80)) | ((nn>=86) & ww>=78)))
table 2
feature positions right detection feature positions right detection

non-ok dcp-ok non-ok dcp-ok
2 3 9 14 86 78 7 1 13 9 86 78
3 5 2 9 86 78 9 3 13 2 86 78
9 3 2 4 86 78 1 9 5 4 86 78
9 1 4 5 86 78 7 3 2 9 86 78
1 4 13 9 86 78 7 9 4 1 86 78
9 4 3 2 86 78 4 2 3 9 86 78
7 1 4 9 86 78 1 7 9 4 86 78
5 7 9 1 86 78 9 1 13 5 86 78
2 9 3 7 86 78

Fig. 24.1: Feature combinations by 'random search' - polydat_3, 'm=2'

50

condition: if (((nn>=80) & (ww>=80)) | ((nn>=86) & (ww>=78)))

feature number = {1, 4, 3,7, 8, 9, 22, 30, 36, 37, 81, 308, 457, 459}

table 3
feature positions right detection feature positions right detection
non-ok dcp-ok non-ok dcp-ok
8 7 6 1 86 78 1 8 10 3 82 80
7 8 1 5 86 78 1 7 8 14 86 78
3 2 8 6 86 78 6 7 1 8 86 78
3 8 5 2 86 78 10 8 1 3 82 80
1 3 10 8 82 80 5 3 2 8 86 78
3 8 2 6 86 78 7 1 6 8 86 78
3 2 13 8 86 78 6 2 8 3 86 78
2 8 5 3 86 78 7 6 8 1 86 78
1 6 5 8 86 78 8§ 5 3 2 86 78
5 8 3 2 86 78 1 8 6 14 86 78
1 8 13 5 86 78 3 5 8 2 86 78
6 1 8 17 86 78 7 3 8 2 86 78
2 5 8 3 86 78 8§ 5 2 3 86 78
5 2 3 8 86 78 8 6 7 1 86 78
3 8 6 2 86 78 8 1 5§ 7 86 78
3 7 2 8 86 78 1 6 13 8 86 78
2 8 5 3 86 78 7 3 8 2 86 78
7 6 1 8 86 78 6 8 1 5§ 86 78
3 5 2 8 86 78 5 1 8 17 86 78
8 5 6 1 86 78 1 7 13 8 86 78
7 2 3 8 86 78 1 8 5 6 86 78
8 5 6 1 86 78 8 3 2 7 86 78
7 8 2 3 86 78 6 2 8 3 86 78
7 8 6 1} 86 78 8 2 3 5 86 78
8 1 7 6 86 78 6 8 2 3 86 78
1 8 5 6 86 78 8 3 6 2 86 78
1 7 6 8 86 78 2 8 3 5 86 78
5 8 1 6 86 78 2 6 3 8 86 78
6 1 5 8 86 78 5 8 1 7 86 78
7 8 5 1 86 78 8 5 13 1 86 78
8 7 2 3 86 78 1 3 8 10 82 80
8 2 3 17 86 78 7 3 2 8 86 78
6 5 1 8 86 78 3 2 5 8 86 78
1 8 7 6 86 78 3 10 1 8 82 80
6 7 8 1 86 78 8§ 3 1 10 82 80
1 6 13 8 86 78 8 1 5 6 86 78
6 8 13 1 86 78 3 2 13 8 86 78
8 7 1 6 86 78 1 7 8 6 86 78
5 1 7 8 86 78 3 2 5 8 86 78
2 6 8 3 86 78 2 3 8 6 86 78
3 2 8 7 86 78 5 8 13 1 86 78
1 6 8 5 86 78 8§ 3 13 2 86 78
2 5 8 3 86 78 8 3 5 2 86 78
8 1 5 7 86 78 8 2 3 5 86 78
2 5 3 8 86 78 6 8 2 3 86 78
Fig. 24.1: Continued

51

feature number = {1, 4, 3, 8, 9, 21, 22, 30, 35, 36, 81, 198, 457, 459}
condition: if (((nn>=80)&mww>=80)) | ((nn>=86) & (ww>=78)))

table 3
feature positions right detection
non-ok dcp-ok
1 8 5 4 86 78
7 1 8 14 86 78
7 1 8 5 86 78
4 2 8 3 86 78
3 2 8 5 86 78
8 1 4 7 86 78
3 4 2 8 86 78
8 2 3 7 86 78
5 8 13 1 86 78
1 4 13 8 86 78
feature number = {1, 4, 3, 8, 9, 22, 30, 35, 51, 111, 210, 455, 457, 459}
condition: if (((nn>=80)&ww>=80)) | ((nn>=86) & (ww>=79)))
table 4
feature positions right detection
non-ok dcp-ok
7 5 10 6 80 80
6 4 7 10 80 80
7 4 10 5 80 80
Fig. 24.1: Continued
feature number = {1, 3, 4, 8,9, 22, 30, 37, 81, 111, 452, 450, 459, 460}
condition: if (((nn>=80) & (ww>=80)) | ((nn>=86) & ww>=79)))
table 1
feature positions right detection feature positions right detection
non-ok dcp-ok non-ok dcp-ok
1 12 5§ 9 86 80 8. 5 1 2 80 80
5 10 2 8 80 80 8 5 2 1 80 80
6 12 1 9 86 80 1 6 2 8 80 80
1 9 7 5 86 80 10 6 2 8 80 80
10 9 6 7 84 82 1 9 7 14 86 80
7 10 9 6 84 82 1 9 8 2 80 80
2 1 5 8 80 80 5 12 9 8 80 80
10 8 7 6 80 82 3 10 8 1 80 80
7 4 9 1 86 80 8§ 12 1 3 80 80
1 8 2 4 80 80 1 4 8 2 80 80
1 7 5 9 86 80 1 12 13 9 86 80
8 3 1 10 80 80 10 8 2 9 80 80
5 8 1 2 80 80 79 6 1 86 80
8 2 4 10 80 80 9 5 7 10 84 82
5 12 7 3 82 80 2 1 4 8 80 80

Fig. 24.11: Feature combinations by 'random search' - polydat_3, 'm=5§'

52

feature number = {1, 4, 8, 9, 22, 30, 32, 37, 67, 81, 452, 450, 459, 457}
condition: if (((nn>=81) & (ww>=81)) | ((nn>=86) & (ww>=79)))
, table 2

feature positions right detection
non-ok dcp-ok

1 6 4 10 86 80
6 4 1 10 86 80
1 12 3 10 86 80
1 12 13 14 86 80
3 6 1 10 86 80
6 10 5 1 86 80
4 6 10 1 86 80
10 3 1 6 86 80
3 12 101 86 80
1 12 10 5 86 80
10 12 1 14 86 80

Fig. 24.11: Continued

After running similar simulations for different m's with randomly chosen features from the
pool of the aforementioned five®? groups, I started a sequence of pseudo-exhaustive
searches with those features from which we received good results by random search.

For this sequence of simulations the parameter m was set equal to 5. We started with
four-tuple combinations out of a pool of 14 features (4/14). We then gradually increased
the number of the features - within the tuple and the pool - up to 8/22. To run the
simulation with this final setting, we needed a computation time of several weeks.

In the following figures, you see an example for one of the best 4-tuple results we
obtained for the polydat_3:

4-tuple combination: 81 & 111 & 450 & 4524,

dimension: polygraph session.

correct detection rate: 84% for non-deceptive and 86% for deceptive files.
dimension: polygraph examination* - containing 1 to 4 sessions.
correct detection rate: 89% for non-deceptive and 94% for deceptive files.
dimension: polygraph examinations with more than two sessions.
detection rate: 100%.

42See Fig. 8 for four of them and page 25 for the additional fifth one.
43For information about the exact meaning of these feature numbers, see Fig.41.
44See "Evaluation strategy” in chapter 3.1.3.4.

53

Uik defuzzification per
session test 0.4428 0
0.4474 0
0.2727 0 0.5997 1.0000
0.4680 0 .
0.4404 0
0 0.3764 0
0.3709 0
0.5774 1.0000 0.3383 0
0.3208 0
0.4075 0
0 0.4668 0
0.4843 0
0.6157 1.0000 04515. O
0.5416 1.0000
1 misclustered
0.3964 0
0.4095 0 0.5232 1.0000
0.4480 0 0.4085 0
0.4862 0
0
0.3915 0
0.4722 0 0.4425 0
0.4755 0 0.3860 0
0.5046 1.0000
0
0.4200 0
0.4387 0 0.4443 0
0.4459 0 0.4315 0
0.4346 0
0
0.4974 0
0.4005 0 0.3980 0
0 0.3964 0
0.4351 0
0.4251 0 0.5863 1.0000
0.3723 0
0
0.3786 0
0.4505 0 0.5783 1.0000
0.4414 0 0.4377 0
0.3218 0 0.3527 0
0

1

misclustered

Fig.25: Defuzzified results for
[81-111-450-452] feature combination

non-deceptive files
polydat_3
m=5

54

Uik defuzzification per

0.6374
0.5389
0.5094

session test

1.0000
1.0000
1.0000

0.5696
0.4185
0.5057

1.0000
0
1.0000

0.5508
0.5237

1.0000
1.0000

0.5533
0.5878
0.5941

1.0000
1.0000
1.0000

0.4533
0.5383
0.5316

1.0000
1.0000

0.5452
0.5266
0.3128

1.0000
1.0000

0.5068
0.5735
0.6276

1.0000
1.0000
1.0000

0.5504
0.5706
0.5542

1.0000
1.0000
1.0000

0.5555
0.5692
0.5650

1.0000
1.0000
1.0000

0.4418
0.6468
0.5009

1.0000
1.0000

0.5593
0.5596
0.4109

1.0000
1.0000

0.6002
0.5550
0.5148

1.0000
1.0000
1.0000

0.5964
0.6112
0.6224

1.0000
1.0000
1.0000

0.7130
0.5834
0.5844

1.0000
1.0000
1.0000

0.5472
0.5758
0.5924

1.0000
1.0000
1.0000

0.5879
0.6284
0.6078

1.0000
1.0000
1.0000

0.3902
0.5399
0.4636

1.0000

misclustered

Fig.25: Continued

deceptive files
polydat_3
m=5

55

4.1.2.2. Results of the genetic method:

Simultaneously to the aforementioned sequence of searches, I started with a compromise
between the random and the pseudo-exhaustive search method,; i.e. the genetic alternative.
I decided to use this method in two different ways:

1. In order to increase the number of potentially good features in the pool, I
initialized the genetic code with up to 50 features from which (in different
simulations) 4-, 6-, 8-tuple combinations were made.

2. In order to accelerate the search, but process the data more exhaustively,
I decided to use the genetic code only for the best features from random
and pseudo-exhaustive simulations and narrow the feature pool to these
30 selected features. In this simulation, 15-tuple combinations were made.

Recall that having 30 or 50 features in the pool makes a big computation difference. For
example, choosing exhaustively 8-tuples out of 50 or 30 features makes a difference of

following number of computations:

50\ (30) 50! 30! o0
8) | 8) 8I(50-8)! 81(30-8)!

In the first part of the genetic search - as expected - we had similar problems as scientists
have with the theory of evolution as the cause of our being*. The only way we could get
the following good results was the continuous manipulating of the evolution process - by
changing parameters (like mutation rate), features (=genes) and feature numbers
(=population size and also number of genes in one chromosome), or by starting again if
the simulation began with a very low detection rate (=average fitness). In spite of these

manipulations the first version of the genetic search took a simulation time of over two
months of continuous computation. Without the constant controlling process over this
genetic system the evolution (by chance as it is its nature) could have hardly provided any
appropriate improvement4. As a result we obtained 12 (see Fig.26) 8-tuples combination

45Further discussion about "evolution vs. creation" would break up the limitations of this project; For
interested readers I recommend the following references: [Morris1987] [Johnson1991}.

46For example, one of the uncontrolled simulation for polydat_1 was stopped after 561 generations
providing no particular results.

56

with an average of 85% correct detection rate for polydat_3 similar to the results of the 4-
tuple combination mentioned in chapter 4.1.2.1. We also obtained 3 outstanding (86%
correct detection rate) individuals within three different generations (population size of
200 to 300, total number of generation 1000, polydat_3).

feature numbers of the best
8-tuple combinations

8,30,81,81,111,363,458,482
9,37,81,111, 111,449,458, 460
9,37,111,111,449,457,457,482
9,37,111,111,358,449,457,458
9,37,111,111, 235,449,457, 460
37,79,111,111, 197,358 , 449,457
37,111, 111,197, 449,457,460, 460
37,111,111, 111,235,358 ,457,458
37,111,111,235,235, 449,453,457
37,111,111, 197,358,361, 458 , 460

37,81,111,235,235,363,450,453
37,81,111,235,235,359,450,453

37,79, 111,111, 197,235, 449,457
37,111,111, 235,235,453, 457,460
37,111,111,197,235,452,457, 460

correct detection rate

ndcp dcp
84 86
84 86
84 86
84 86
84 86
84 86
84 86
84 86
84 86
84 86
86 84
86 84
86 86
86 86
86 86

ndcp: non-deceptive files
dcp: deceptive files
data: polydat 3

Fig.26: Results of the first version of the genetic search

Concerning the defuzzified results, all the combinations with 85% correct detection rate
show similar structure as depicted in Fig.25. The three best 8-tuple combinations (86%
correct detection rate) cluster the data exactly in the same groups as shown in the

following figure.

57

Uik defuzzification per
session test

0.4143 0
0.4780 0
0.4583 0

0
0.5269 1.0000
0.4035 0
0.4035 0

0
0.5601 1.0000
0.5412 1.0000

1
0.4391 0
0.4465 0
0.4833 0

0
0.4669 0
0.4679 0
0.5058 1.0000

0
0.4401 0
0.4392 0
0.4481 0

0
0.4114 0

0
0.4405 0
0.4212 0
0.4664 0

0
0.4523 0
0.4488 0
0.3645 0

0

0.4565 0
0.4853 0
0.5849 1.0000

0.4441 0
0.4471 0
0.3506 0
0.4983 0
0.4872 0
0.4938 0
misclustered
0.4008 0
0.4962 0
0.4058 0
0.4268 0
0.4740 0
0.4050 0
0.4475 0
0.4517 0
0.4440 0

0.5692 1.0000

0.4432 0
0.4118 0
0.4289 0
0.4271 0
0.5548 1.0000
0.4696 0
0.4135 0

compare to Fig.25

Fig.27: Defuzzified results for

non-deceptive files
polydat_3
m=35

[37-111-111-197-235-452-457-460] feature combination

58

0.5446 1.0000
Uik defuzzification per 0.5495 1.0000
session test 0.5615 1.0000
1
0.5842 1.0000 .
0.5511 1.0000 0.5345 1.0000
0.5197 1.0000 0.5666 1.0000
1 0.5370 1.0000
1
0.5665 1.0000
0.5483 1.0000 0.5539 1.0000
0.6586 1.0000 0.5565 1.0000
1 0.4388 0
1
0.5227 1.0000
0.5169 1.0000 0.5817 1.0000
1 0.5042 1.0000
0.4946 0
0.5519 1.0000 1
0.5727 1.0000
0.5747 1.0000 0.5706 1.0000
1 0.5990 1.0000
0.6133 1.0000
0.5411 1.0000 1
0.5224 1.0000
0.6020 1.0000 0.6386 1.0000
1 0.5674 1.0000
0.5576 1.0000
0.4308 0 1
0.4916 0
0.4801 0 0.5457 1.0000
0 misclustered 0.5646 1.0000
0.5482 1.0000
0.5044 1.0000 1
0.5686 1.0000
0.5830 1.0000 0.5096 1.0000
1 0.5954 1.0000
0.6347 1.0000
0.5488 1.0000 1
0.5460 1.0000 0.4532 0
0.5413 1.0000 0.4323 0
1 0.5457 1.0000
1 compare to Fig.25
deceptive files
polydat_3
m=5
Fig.27: Continued

59

The followings are the clustering results of the best 8-tuple combinations for polydat_3:

dimension:

correct detection rate:

dimension:

correct detection rate:

dimension:
detection rate:

polygraph session*’.
86% for both non-deceptive and deceptive files.

polygraph examination - containing 1 to 4 sessions.
94% for both non-deceptive and deceptive files.

polygraph examinations with more than two sessions
97%.

In the second part of the genetic search as we fed the evolution process with the best
features, we obtained after about 3 weeks of continuous simulation the following results:

37 11
111 11
111 36
197 36
358 37
358 37
361 67
361 81
449 197
457 235
458 457
458 458
478 482
478 482
482 482

84 84
8 86

8 8
11 37
37 50
111 79
111 111
197 111
235 235
358 235
359 358
359 452
363 453
363 478
452 478
478 478
482 482

correct detection rates (in %):

84 84
8 86

37
81
81
81
81
197
235
358
359
450
450
453
458
478
478

84
86

30
32
32
32
36
37
39
50
67
79
359
449
449
478
478

84
86

11
30
32
39
81
81
81
111
197
235
235
358
359
450
482

84
86

30
32
39
81
81
81
111
197
235
235
358
358
450
478
482

84
86

11
30
32
39
81
81
81
111
197
235
235
358
358
450
482

84
86

11
30
32
39
79
81
81
81
111
197
235
235
358
359
450

84
86

11
30
32
39
81
81
81
11
197
235
235
358
359
450
478

twelve 15-tuple combinations: (the features in each tuple are ordered vertically)

84 :non-deceptive files

86 :deceptive files

polydat_3, m=5

Fig.28: Results of the second version of the genetic search

47See "Evaluation strategy” in chapter 3.1.3.4.

60

81.5

81 .

805 | -

average fitness

795 | -

78.5 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450

generation

polydat_3, m=35.

15-tuple combinations out of a pool of 30 fearures"s.

Fig.29: Average fitness of each generation
provided by the second version of the genetic search

As you see in this figure, the average fitness (from all the chromosomes within a
generation) increases over the period of time. It then approaches a local asymptote which
represents a local error minimum. By increasing the mutation rate after the 150th
generation, we could avoid being stuck in that local minimum for further development.
This higher mutation rate helped the evolution process getting a 1% better average fitness

per generation for the rest of the simulation.

Our hope for this simulation was to get outstanding chromosomes with a very high fitness
simultaneously to the increasing process of the average fitness per generation. However,
the outstanding chromosomes appeared unsystematically in different generations and not
at the end. In fact, most of them* belong to the first part of this evolution.

48Gee the begining of this chapter for more details.
49Gee Fig.28 for the best feature combinations.

61

4.1.2.3. Final results of FCM- A comparison between all three polydat i's:

All the aforementioned results belong to the data set polydat_3, and all the three methods,

(1) previous researches using the fuzzy K-nearest neighbor (KNN) classifier, (2) the LMS
fuzzy adaptive filter and also (3) the fuzzy-c-means algorithm show that the data structure

within the polydat_3 is better to cluster or classify than the other two sets.

As it is the nature of a clustering versus a classifying method, I did not set the highest
priority on finding the same best features for all three polydat_i's, but for each of them
individually. After finding those best combinations, I then compared the results and tested

the consistency of the features (see Fig. 33, 34, 35).

Using either sessions or examinations® as the counting dimension the best results for each

polydat_i individually are shown in the following figures.

data average correct detection rate
polydat_1 81%
polydat_2 79%
polydat_3 86%

Fig.30: Clustering results using individual features
(using sessions as the counting dimension)

data average correct detection rate
polydat_1 91%
polydat_2 82%
polydat_3 94%

Fig.31: Clustering results using individual features
(using examinations as the counting dimension)

50See "Evaluation strategy” in chapter 3.1.3.4.

62

data average correct detection rate

polydat_1 93%
polydat_2 87%
polydat_3 97%

Fig.32: Clustering results using individual features
(counting only those examinations with more than two sessions)

In the following figures, a comparison between the three polydat_i's were made using the
best feature combination for one of the polydat_i's at a time and testing it for the other
two ones. As you will see, the best results! - while taking the same features for each
polydat_i - is 79.7% for the feature combination’? [9, 30, 81, 197, 478, 111}, and in

average 79.3%.
polydat_i
feature tuple i=3 i=2 i=1

37,79, 111, 111, 197, 235, 449, 457 86% 77% 75%
37,111, 111, 197, 235, 452, 457, 460 86% 77% 75%
37, 111, 111, 235, 235, 453, 457, 460 86% 77% 74%
30, 81, 81, 111, 197, 458 85% 79% 73%
9, 30, 81, 111, 197, 458 85% 79% 73%
8,37, 50, 79, 111, 111, 235, 235, ...

358, 452, 453, 478, 478, 478, 482 85% 76% 76%

Fig.33: Comparison #1 (dimension: sessions)
(taking some of the best polydat_3 feature tuples and testing it for the others)

For the exact labels of this feature numbers see appendix, Fig.42.

51With polygraph sessions as the counting dimension.
528ee Fig.35, "Comparison #3".

63

feature tuple

9, 30, 30, 39, 235, 450

30, 30, 39, 50, 235, 450
30, 30, 39, 81, 235, 450
30, 30, 39, 197, 235, 450
30, 30, 39, 235, 363, 450
30, 30, 39, 235, 358, 450
30, 30, 39, 235, 450, 458
30, 30, 39, 235, 482,450
30, 30, 39, 235, 361, 450
30, 30, 39, 235, 359, 450
30, 30, 39, 235, 450, 457
30, 39, 235, 363, 450, 482
30, 39, 235, 363, 450, 478

80%
80%
80%
81%
81%
80%
80%
80%
80%
80%
80%
80%
80%

polydat_i

f
1=

75%
75%
75%
74%
75%
76%
75%
75%
75%
75%
75%
72%
71%

i=3

81%
81%
81%
82%
81%
81%
81%
81%
81%
81%
81%
83%
83%

Fig.34: Comparison #2 (dimension: sessions)
(taking some of the best polydat_I feature tuples and testing it for the others)

64

feature tuple

9, 30, 81, 197, 478, 111
9, 30, 50, 81, 197, 111

9, 30, 81, 358, 197, 111

9, 30, 81, 359, 197, 111
9,30, 81, 197, 457, 111
30, 81, 105, 111, 197, 358
30, 81, 105, 111, 197, 359
30, 81, 105, 111, 197, 457
30, 81, 105, 111, 197, 459
30, 81, 111, 197, 358, 359
30, 81, 111, 197, 358, 456
30, 81, 111, 197, 358, 457
30, 81, 111, 197, 358, 459
30, 81, 111, 197, 359, 456
30, 81, 111, 197, 359, 457
30, 81, 111, 197, 359, 459
30, 81, 111, 197, 456, 457
30, 81, 111, 197, 456, 459
30, 81, 111, 197, 457, 459
30, 105, 111, 197, 359, 459
30, 105, 111, 197, 456, 459
30, 105, 111, 197, 457, 459
30, 105, 111, 197, 456, 457
30, 111, 197, 358, 359, 459
30, 111, 197, 358, 456, 459
30, 111, 197, 358, 457, 459
30, 111, 197, 456, 457, 459

79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
7%
79%
79%
79%
79%
79%
79%
79%
79%
79%
79%
78%
78%
78%
78%
78%

polydat_i

75%
74%
74%
74%
74%
74%
74%
74%
74%
74%
74%
74%
74%
74%
74%
74%
73%
74%
74%
74%
74%
74%
74%
T74%
74%
74%
74%

85%
85%
85%
85%
85%
84%
84%
85%
84%
85%
85%
85%
85%
85%
85%
85%
85%
85%
85%
84%
84%
85%
85%
85%
85%
85%
85%

Fig.35: Comparison #3 (dimension: sessions)

(taking some of the best polydat_2 feature tuples and testing it for the others)

65

4.2. LMS fuzzy adaptive filter

The first test we did, was to find the performance of the filter before any training. That is,
we used the classifier as a conventional fuzzy logic system designed solely based on the
four linguistic rules mentioned above. The results are listed in the following table:

correct detection rate in

polydat_i non-deceptive files deceptive files average
i=1 70% 12% 71%
i=2 70% 76% 73%
= 70% 88% 79%

Fig.36: Results based solely on 4 aforementioned linguistic rules
without any training

Note that the percentage of correct recognition for non-deceptive subjects are the same
for polydat_1, polydat_2, and polydat_3, because they are all the same datas3. Also note
that the results are best for polydat_3, as it was for KNN and FCM. This may be partially
due to polydat_3's good performance in general, independent of the classifying schemes.
We believe that it may also be a result of us setting up the linguistic rules by having

observed polydat_3.

However, the outcomes for polydat_1 and polydat_2 are good enough such that one can
be sure the linguistic rules are sufficiently general even for data that we did not examine.

As mentioned in chapter 3.2.3, we then tested the fuzzy LMS algorithm trained with
twenty training data (ten deceptive and ten non-deceptive) and again with seventy training
data (thirty-five deceptive and thirty-five non-deceptive) for the three sets of data, for a
total of six tests. Twenty trials were performed for each test, and the system was
initialized with the linguistic rules before each trial. The training data were randomly
chosen for each trial, and the rest of the available data in each set were for testing.

53See polygraph files on chapter 6.2.

66

We computed the percentage of correct recognition of testing data for each trial,
averaging the performance for deceptive and non-deceptive subjects. The recognition rate
of those twenty trials are averaged, rounded to two digits, and reported in the following
table. The sample standard deviations are also shown.

correct detection rate

polydat_i version #1 version #2
i=1 75% (6%) 73% (2%)
i= 74% (7%) 73% (3%)
i= 78% (6%) 79% (2%)

version #1: 70 training & 30 testing sessions
version #2: 20 training & 80 testing sessions
(standard deviation in parentheses)

Fig.37: Average percentage of correct detection rate
for twenty trials of each test

As may be expected, the recognition rate improves in general when training data is used,
as compared to the results of the untrained system. Also, the recognition rate is typically
higher when the system is trained with more data. The difference, however, is not
dramatic. The use of training data offers small incremental improvements. The one
exception would be for data set polydat_3. Here more training data seems to lower the
performance. The effect is probably due to the fact that the initialization of the reasoning
rules were based on our examination of polydat_3, which covered all 100 data. Yet the
training algorithm was to learn only a subset of that, so it was handicapped compared to

human reasoning.

Human reasoning may also be better in this case because the training algorithm only
attempts to optimize the system in the least mean square sense, slightly different than our
ultimate goal of maximizing recognition rate. At any rate, when the standard deviation is
taken into account, the difference in recognition rate becomes insignificant.

Another noticeable difference between the results using different amounts of training
samples is the value of the sample standard deviation. A large number of testing data leads

67

10 a small standard deviation. Conversely, a small amount of testing data leads to a large
standard deviation. This confirms what we intuitively know; the average percentage of
correct recognition is more accurate when a large amount of testing data is available.

The above observations illustrate a practical issue in using many adaptive and learning
algorithms, that of partitioning a limited amount of data into training and testing sets. For
most algorithms, too much data in training and little in testing leaves little assurance about
the performance of the system. On the other hand, too much data in testing and little in

training assures mediocre performance from the system.

More data for both training and testing would help, but many times that may not be
available. Fuzzy logic systems mitigate this problem by exploiting linguistic information.
Unlike neural networks and many statistical techniques, which are completely dependent
on numerical data, this fuzzy LMS algorithm uses numerical data mainly to optimize a
good fuzzy system. The above results show that, given good initialization of the reasoning
rules, the system can perform well even with little or no training data. This robustness is

one of the many advantages of fuzzy logic.

68

4.3. Other observations:

During this project, aside from the results and conclusions we were looking for, we also
obtained several side results. In this passage, I will mention some of the interesting

observations we made.

1. As mentioned before, the fuzzy-c-means (FCM) algorithm is initialized by random
chosen membership values which will be modified and optimized during the iterative
process. Thus, FCM algorithm is almost independent of the initial membership values.
During our testing process, we noticed that the FCM algorithm is not absolutely
independent of the initial values. Thus, it is possible that

* the algorithm may run into different local minima or

* because of its unsupervised nature, the algorithm may switch the clusters,
i.e. if - depending on our interpretation - the first cluster represents the non-
deceptive and the second one the deceptive files, it might be the opposite

while using other initial random values.

To avoid any misinterpretations, I decided to create two sets of random membership
values (for c=2 and c=3) and save them as fixed initialization values for any further
simulations. In the following figure, '+ represents the non-deceptive, *' the decptive files;

1 " 9&* T - =
-+ ¥ + » x*
09 | + LR .+]
8 -+ + > 4 - -
g 08 be s
] +x - *
s 0.7 +§K—l-*- B3 b3 -+ * el
".% B S + + + » + *
[% + +x 4 % 4+ X
-é T ¥+ X ¢ K x]
] -+ -+ P K K
05 L + fesd + 4
£ * % < X ¥ % " * .
04 | K+ + W+
+ -+ ¢ ¥ MK + *®
03 [% * % T, * Y. -+ - * o+ +
+ +
02 B REH X e e |
* + * +
01 t ¥+* * Mok 4, w. TO*]
+ ¥ &+ + + -+ & -
0 'y N WK N . e
0 20 40 60 80 100
sessions

Fig.38: Fixed initial random membership values for c=2

69

2. "Outlier effect”:

In the real world of using an automated polygraph system as suggested in this project, we
have to keep in mind the existence of the outlier effect. This occurs, for instance, when a
non-deceptive person (= membership value between zero and 0.5) becomes misclustered
in a deceptive data space with a very high membership value close to one. In other words,
if a normal non-deceptive person gets labeled as very deceptive, or vice-versa.

We noticed this phenomenon in both clustering and classifying algorithms®. We also
noticed that by making the system "fuzzier" - e.g. higher m or/and ¢ for FCM - as
expected, the outlier effect can be reduced, but not eliminated though.

3. "Performance limitations":

There seem to be a limit in recognition rate using the features available by both fuzzy
algorithms used in this project and also by fuzzy k-nearest neighbor algorithm used in
previous works [Layeghi1993,1] [Dastmalchi1993] for all the available polydat_i's. There
may also be psychophysiological limitation on the recognition rate. However, polydat_3
provided, independent of all the three algorithms, the best results compared to the other
two polydat_i's.

54See also "Epilogue”.

70

4.3. A COMPARISON

BETWEEN THE THREE FUZZY ALGORTHMS USED IN THIS
AND THE PREVIOUS PROJECT
(FUZZY-C-MEANS, LMS FUZZY ADAPTIVE FILTER AND FUZZY K-NEAREST NEIGHBOR)

The fuzzy LMS system is unique in its application of linguistic knowledge. As mentioned
earlier, the use of linguistic knowledge ensures the robustness of the fuzzy system. The
use of linguistic information also ameliorates the problem of not having enough reliable
numerical data. Unlike classification schemes such as the K-Nearest Neighbor, the fuzzy
LMS algorithm is not entirely dependent on numerical data.

When applied to pattern recognition, fuzzy logic systems can be set up to perform like
KNN systems. In KNN systems, numerical data of known class patterns are set up to
estimate the probability density distribution of the classes. The probabilities of new data
points belonging to the different classes are then computed based on such distribution.
Data points around known class samples are then classified into the same class with a
higher probability. The fuzzy-KNN algorithm modifies the classical KNN algorithm by
taking into account the distance between the data point and the known class patterns when
estimating the probability. Conceptually this is similar to setting up clusters around all
known class samples and calculating the degree of belonging of new data points in the
different types of clusters. Other than the exact mathematical equations, that description
fits a fuzzy adaptive system where each rule corresponds to a known class pattern and the

size of the clusters is the same for all rules.

However, fuzzy adaptive systems give up some of the nice theoretical understandings of
the KNN systems but gain some practical advantages. The number of rules required are
usually much smaller than the number of known samples. Fuzzy logic can usually exploit

that to reduce system complexity.

Furthermore, the system complexity for a fuzzy adaptive system stays the same even as
new information are available. This is partly a result of the way this algorithm adapt
continuously; new information are learned as old ones are forgotten. The fuzzy LMS
learning technique is like backpropagation, a popular neural network training technique.
However, the fuzzy LMS learning algorithm requires few epochs for training. In all our

71

trials the maximum recognition rates for testing data peaked in less than thirty epochs.
About 95% of them peaked in less than twenty epochs®. This is a few orders of
magnitude less than most applications of backpropagation. In many cases the peaks
occurred before any training; that is, the system uses only linguistic rules. Here the use of
expert knowledge speeds up the training of the system.

The fuzzy-c-means algorithm, unlike fuzzy LMS, is an unsupervised clustering algorithm.
Given a set of data, FCM looks for a (usually) predetermined number of clusters within
the data points. It does not use any knowledge about the correct, or desired classification
of any of the elements. The algorithm only minimizes an objective function, which is the
sum of a function of the data points' membership values and the distances between the

data points and the clusters' centers.

FCM operates like a black box; given some data, the algorithm automatically computes
the results’6. This presents the advantage that different sets of data using different features
can be tested in a routine manner. FCM also presents a way to normalize the different
dimensions of the data, just like the use of sigma in the fuzzy LMS algorithm. However,
unlike fuzzy LMS, FCM does not present a method to find the optimal way for such

normalization.

The fuzzy LMS algorithm, however, does pose some potential problems of its own. The
use of expert knowledge, while a benefit in some senses, may not be always
straightforward. For example, in our project we did not have any specific knowledge
about the polygraphy itself. Whatever we learned, we learned by looking at numerical
data. As we tried to find more complicated patterns, patterns involving three, four, or
more features, the analysis became more difficult. Naturally one wishes to automate this
process. If we do not rely on some learning procedures, however, rules cannot be
automatically found for the fuzzy system. Much research also needs to be done to
understand the fuzzy LMS algorithm's learning dynamics. While the same method,
gradient descent, is used on both backpropagation and the fuzzy LMS algorithm, the
general shapes of the error surface between the two are different. In backpropagation, all
the parameters have the same range and lie in an uniform neural network structure. In the
fuzzy LMS algorithm, the parameters can have different ranges and lie a fuzzy logic

SSHowever, we ran every trial to forty epochs to ensure that there is no "false” peak.
560ur job is basically to adjust the parameters.

72

structure that is not completely uniform. The effects of such differences on the shape of

the error surface and the learning dynamic are unknown.

In the following, I will mention again some of the results we obtained by using different
fuzzy clustering or classifying algorithms. Recall that also the searching strategies to find
the best features -and feature combinations- were different for each of the aforementioned

algorithms®7.

polydat_i
fuzzy-c-means®® 91% 82% 94%
fuzzy-c-meanss 93% 87% 97%
fuzzy K-nearest-neighbor 86% 80% 91%
LMS fuzzy adaptive filter 81% 83% 83%
fuzzy-c-means®? 81% 79% 86%

The results are rounded.

Fig.39: Comparison between different fuzzy algorithms
used for polygraph classification in this and in the previous research

The results of our fuzzy LMS system, while impressive for such a simple set-up, are not
comparable to the results of the same project using other systems. We believe that the
recognition rate will increase for few percentage points by using the suggestions in chapter
5.1

$7See the following chapters 3.1.3.1, 3.1.3.2.1 - 4 for the searching strategics used for the FCM,

chapter 3.2.1 for the visual inspection used for the LMS system,

and chapter II1.3.3. in [Layeghi1993,1] for the methods used for the KNN.

S8FCM using examinations as the counting dimension (see chapter 4.1.2.3. and Fig.31).

$9The same as above but counting those examinations with more than 2 sessions (see Fig.32).

60Since we took 35 out of 50 available non-deceptive sessions for training the LMS filter, it would be
meaningless to evaluate this algorithm by examinations as the counting dimension. Yet, in order to make
it comparable to the other algorithms, the results of the FCM with sessions as the counting dimension are

also shown.

73

§5. FUTURE STEPS AND SUGGESTIONS

5.1. The algorithms:

As mentioned earlier in chapter 2.2.3. about the fuzzy-c-means algorithm, the performance
of this clustering model is influenced by the choice of various parameters. In this project, 1
tried to find the optimum values of the majority of them. However, there are several other
points which should be studied more comprehensively: They are

* the initial cluster centers,

¢ the order in which the samples are taken as input,
* the choice of distance measure,

* the termination criteria and

* the geometrical properties of the data.

Most imprtantly, more information about the geometrical arrangement of the data points
and the appropriate choice of the norm could help us improve the clustering algorithm.
There are several suggestions in [Bezdek1981] [Bezdek1992] [1IScorp1993] for a better
understanding of the algorithm's dynamics and for making systematic decisions concerning
different types of distance norms and elliptical cluster shapes.

For future studies, I highly recommend a deeper investigation of our clustering algorithm
by setting c=3 and trying defuzzification thresholds other than 0.5.

In this project, we decided to systematically test the FCM algorithm with different values
of m to find its optimum. For additional (and more theoretical) investigations, I suggest
[Choe1992] as an introductory step. It may be also helpful to use different values of m for
 different sessions simultaneously, while looking for the most realistic clusters within the

entire session space.

An exciting additional investigation would be a new polydat made up of the best clustered
sessions of our three polydat_i's as a reference for any further clustering process. By doing
this we could give the algorithm a better chance to cluster correctly even the critical

sessions.

74

Concerning the LMS adaptive algorithm, one may investigate the effect of changing the
learning factor; throughout our experiment it remained at 0.005. Upon observing the
quickness of learning in our testing, we believe the learning factor can be decreased in the
future. -

We also believe that there should not be just one but at least three different learning
factors: one for the ds, one for the @'s, and one for the x;'s; because these three types of
parameters lie in a very irregular parameter space, unlike that of backpropagation where
all parameters lie in a more or less uniform parameter space.

For illustration, the three types of parameters comapred to one another have very different
numerical ranges. Conceptually speaking, a parameter with a large range of movement
should generally have a larger learning factor than one with a smaller range of movement.
However, the gradient and the general shape of the error surface would also affect the
value of the learning factors. It is possible that with a constant learning factor, a factor that
is too large for one type of parameter - one that causes oscillation for that parameter - may
be too small for another type of parameter and effects little change. That is, some
parameters become more willing to adapt while others hesitate to change.

Setting up separate learning factors for the different types of parameters should eliminate
this problem. However, choosing a learning factor is still a complex trial-and-error task,
and having more learning factors to deal with requires more sophisticated understanding
of the learning dynamics we possess. Plots of the mean squared error of two sets of
randomly chosen training data suggest that there are noticeable points where the rate of
decrease dramatically changes (see the following figure).

75

0.9

0.85 - i
<]
5 08 L i
2
s 0.75 - ’ 4
g
s 07 | B
£
065 | .
06 | .
055 L 7
05 | p
0.45
0 10 20 30 40
epochs
0.6
3] 058 | B
5
J:
] 056 | .
g
s
2 o054 |]
052 | 7
05 | J
0.48 . . A .
0 10 20 30 40 50
epochs

Two cases of the mean squared error of training data as the system "learns.”

Fig.40: The influence of the learning factor

More rules and features should be added to improve this LMS system. As the complexity
of the system grows, however, the design will depend more on the learning algorithm than
on heuristic knowledge. This requires much more understanding of the learning dynamics.
Preliminary testing with three features and eight rules shows little improvement in
recognition rate. Obviously many additional studies need to be done in this case.

As mentioned in chapter "Setting Linguistic Rules", for future investigations one may also
experiment with different decision thresholds for determining deception and nondeception.
However, the benefit, if any, of this is not clear. One may also experiment with mapping
the fuzzy output to a confidence value in addition to just a deception/nondeception
decision. This may be more helpful in practical situations. One should also test the

76

algorithm with random initializations; that is, without using any expert knowledge. It
would be interesting to compare the training time, performance, and robustness of that

system to the present one.

Fuzzy logic systems promote rapid development of robust, simple, and reliable systems.
Our project validated that point. Some of the main problems with designing fraditional
fuzzy logic systems, however, are their dependence on heuristic information, their lack of
design automation and their unproven ability to reach an optimal solution by linguistic
rules alone. Our use of the LMS learning algorithm attempts to solve such problems. The
learning algorithm did offer small, incremental improvements, but we believe that the
learning algorithm has not yet been explored fully. A better understanding of the learning
dynamics would offer more insight into improving the system.

In future works, one may also consider other strategies which use irrelevant questions,
(see Fig.7). These questions could be easily exploited for normalizing the data and making

it independent of individual charateristics of the tested subjects.

5.2. The polygraph examination:

As expecteds!, and eventually proven®?, our clustering system can provide an up to 12%
more correct detection rate by using the dependency between the polygraph sessions.
Therefore, I recommend recording at least three - ideally five - test sessions with different
a order of questions per each examinations. Thus, in cases where some sessions within an
examination are clustered incorrectly, the algorithm can easily ignore the minority and find
the right cluster according to the correctly clustered majority.

One may also consider other time frames, and emphasize those features which enabled us
to cluster the data the best. It may also be helpful to mark the data of female and male
subjects, or to consider them differently, since the ranges of the biophysical reactions are

not in the same numerical spaces.

Ultimately, an automated polygraph system which uses the aforementioned strategies to
distinguish between truth and deception should have a built-in feature extraction tool
which can directly feed the needed data to the algorithm.

61See chapter 3.1.3.4.
62See chapter 4.1.2.3.

77

§6. APPENDIX

78

Feat- | Chan- Extraction Method Combination
ure nel Method
1 GSR. mean ave(r) - ave(c)
2 GSR mean ave(r) + ave(c)
3 GSR mean max(r) - max(c)
4 GSR mean min(r) - min(c)
5 GSR mean max(r) - min(c)
6 GSR mean min(r) - max(c)
7 GSR curve length max(r) / max(c)
8 GSR curve length ave(r) - ave(c)
9 GSR curve length ave(r) + ave(c)
10 GSR curve length max(r) - max(c)
3 GSR curve length min(r) - min(c)
12 GSR curve length max(r) - min(c)
13 GSR curve fength min(r) - max(c)
14 GSR area max(r) / max(c)
15 GSR area ave(r) - ave(c)
16 GSR. area ave(r) + ave(c)
17 GSR area max(r) - max(c)
18 GSR area min(r) - min(c)
19 GSR area max(r) - min(c)
20 GSR area min(r) - max(c)
21 GSR area max(r) / max(c)
22 GSR median of the derivative ave(r) - ave(c)
23 GSR median of the derivative ave(r) + ave(c)
24 GSR median of the derivative max(r) - max(c)
25 GSR. median of the derivative min(r) - min(c)
26 GSR median of the derivative max(r) - min(c)
27 GSR median of the derivative min(r) - max(c)
28 GSR median of the derivative max(r) / max(c)
29 GSR min subtracted from the max ave(r) - ave(c)
30 GSR min subtracted from the max ave(r) + ave(c)
31 GSR min subtracted from the max max(r) - max(c)
32 GSR min subtracted from the max min(y) - min(c)
33 GSR min subtracted from the max max(r) - min(c)
34 GSR min subtracted from the max min(r) - max(c)
35 GSR 1min subtracted from the max max(r) / max(c)
36 GSR maximum of the signal ave(r) - ave(c)
37 GSR. maximum of the signal ave(r) + ave(c)
38 GSR imum of the signal max(r) - max(c)
39 GSR. of the signal min(r) - min(c)
40 GSR maximum of the signal max(r) - min(c)
41 GSR maximum of the signal min(r) - max(c)
42 GSR maximum of the signal max(r) / max(c)
43 GSR minimum of the signal ave(r) - ave(c)
44 GSR minimurm of the signal ave(r) + ave(c)
45 GSR i of the signal max(r) - max(c)
46 GSR of the signal min(r) - min(c)
47 GSR of the signal max(r) - min(c)
48 GSR of the signal min(r) - max(c)
49 GSR. minimum of the signal max(r) / max(c)
50 GSR. mean of derivative ave(r) - ave(c)
51 GSR mean of derivative ave(r) + ave(c)
52 GSR. mean of derivative max(r) - max(c)
53 GSR mean of derivative min(r) - min(c)
54 GSR mean of derivative max(r) - min(c)
55 GSR mean of derivative min(r) - max(c)
56 GSR mean of derivative max(r) / max(c)
57 HFEC mean ave(r) - ave(c)
58 HFEC mean ave(r) + ave(c)
59 HFEC mean max(r) - max(c)
60 HFEC mean min(r) - min(c)
61 HFEC mean max(r) - min(c)
62 HFEC mean min(r) - max(c)
63 HFEC mean max(r) / max(c)
64 HFEC curve length ave(r) - ave(c)
65 HFEC curve length ave(r) + ave(c)
66 HFEC curve length max(r) - max(c)
67 HFEC curve length min(r) - min(c)
68 HFEC curve length max(r) - min(c)
69 HFEC curve length min(r) - max(c)
70 HFEC curve length max(r) / max(c)

71 HFEC area ave(r) - ave(c)

72 HFEC area ave(r) + ave(c)

73 HFEC area max(r) - max(c)
74 HFEC area min(r) - min(c)
75 HFEC area max(r) - min(c)
76 HFEC area min(r) - max(c)
77 HFEC area max(r) / max(c)
78 HFEC amplitude of the peaks ave(r) - ave(c)

79 HFEC amplitude of the peaks ave(r) + ave(c)

80 HFEC amplitude of the peaks max(r) - max(c)
81 HFEC amplitude of the peaks min(r) - min(c)
82 HFEC amplitude of the peaks max(r) - min(c)
83 HFEC amplitude of the peaks min(r) - max{c)
84 HFEC amplitude of the peaks max(r) / max(c)
85 HFEC dampcard ave(r) - ave(c)

86 HFEC dampcard ave(r) + ave(c)

87 HFEC dampcard max(r) - max(c)
88 HFEC dampcard min(r) - min(c)
89 HFEC dampcard max(t) - min(c)
90 HFEC dampcard min(r) - max(c)
91 HFEC dampcard max(r) / max(c)
92 HFEC number of peaks in cardio ave(r) - ave(c)

93 HFEC number of peaks in cardio ave(r) + ave(c)

94 HFEC number of peaks in cardio max(r) - max(c)
95 HFEC number of peaks in cardio min(r) - min(c)
96 HFEC number of peaks in cardio max(7) - min(c)
97 HFEC number of peaks in cardio min(r) - max(c)
98 HFEC number of peaks in cardio max(r) / max(c)
9 HFEC median of the derivative ave(r) - ave(c)

100 HFEC median of the derivative ave(r) + ave(c)

101 HFEC median of the derivative max(r) - max(c)
102 HFEC median of the derivative min(r) - min(c)
103 HFEC median of the derivative max(r) - min(c)
104 HFEC median of the derivative min(r) - max(c)
105 HFEC median of the derivative max(r) / max(c)
106 HFEC min subtracted from the max ave(r) - ave(c)

107 HFEC min subtracted from the max ave(r) + ave(c)

108 HFEC min subtracted from the max max(r) - max(c)
109 HFEC min subtracted from the max min(r) - min(c)
110 HFEC min subtracted from the max max(r) - min(c)
111 HFEC min subtracted from the max min(r) - max(c)
112 HFEC min subtracted from the max max(r) / max(c)
113 HFEC maximum ave(r) - ave(c)

114 HFEC maximum ave(r) + ave(c)

115 HFEC maximum max(r) - max(c)
116 HFEC i min(r) - min(c)
117 HFEC maximum max(r) - min(c)
118 HFEC maximum min(r) - max(c)
119 HFEC maximum max(r) / max(c)
120 HFEC ini ave(r) - ave(c)

121 HFEC ave(r) + ave(c)

122 HFEC max(r) - max(c)
123 HFEC min(r) - min(c)
124 HFEC minimum max(r) - min(c)
125 HFEC minimum min(r) - max(c)
126 HFEC minimum max(r) / max(c)
127 HFEC median of the derivative ave(r) - ave(c)

128 HFEC median of the derivative ave(r) + ave(c)

129 HFEC median of the derivative max(r) - max(c)
130 HFEC median of the derivative min(r) - min(c)
131 HFEC median of the derivative max(r) - min(c)
132 HFEC median of the derivative min(r) - max(c)
133 HFEC median of the derivative max(r) / max(c)
134 HFEC minampc ave(r) - ave(c)

135 HFEC minampe ave(r) + ave(c)

136 HFEC minampc max(r) - max(c)
137 HFEC minampe min(r) - min(c)
138 HFEC minampe max(r) - min(c)
139 HFEC minampe min(r) - max(c)
140 HFEC minam| max(r) / max(c)

Fig.41: List of labels of all the features used in this project

141 LC mean ave(r) - ave(c)

142 LC mean ave(r) + ave(c)

143 LC mean max(r) - max(c)
144 LC mean min(r) - min(c)
145 LC mean max(r) - min(c)
146 LC mean min(r) - max(c)
147 LC mean max(r) / max(c)
148 LC curve length ave(r) - ave(c)

149 LC curve length ave(r) + ave(c)

150 LC curve length max(r) - max(c)
151 LC curve length min(r) - min(c}
152 LC curve length max(r) - min(c)
153 LC curve length min() - max(c)
154 LC curve length max(r) / max(c)
155 LC area ave(r) - ave(c)

156 LC area ave(r) + ave(c)
157 LC area max(r) - max(c)
158 LC area min(r) - min(c)
159 LC area max(r) - min(c)
160 LC area min(r) - max(c)
161 LC area nax(r) / max(c)
162 LC median of the derivative ave(r) - ave(c)

163 LC median of the derivative ave(r) + ave(c)

164 LC median of the derivative max(r) - max(c)
165 LC median of the derivative min(r) - min(c)
166 LC median of the derivative max(r) - min(c)
167 LC median of the derivative min(r) - max(c)
168 LC median of the derivative max(r) / max(c)
169 LC min subtracted from the max ave(r) - ave(c)

170 LC min subtracted from the max ave(r) + ave(c)

171 LC 1min subtracted from the max max(r) - max(c)
172 LC min subtracted from the max min(r) - min(c)
173 LC min subtracted flom the max max(r) - min(c)
174 LC min subtracted from the max min(r) - max(c)
175 LC min subtracted from the max max(r) / max(c)
176 LC maximum ave(r) - ave(c)

177 LC maximum ave(r) + ave(c)

178 LC maximum max(r) - max(c)
179 LC maximum min(r) - min(c)
180 LC maximum max(r) - min(c)
181 LC maximum min(r) - max(c)
182 LC maximum max(r) / max(c)
183 LC ini ave(r) - ave(c)

184 LC ave(r) + ave(c)

185 LC minimum max(r) - max(c)
186 LC ini ‘min(r) - min(c)
187 LC max(r) - min(c)
188 LC min(r) - max(c)
189 LC max(r) / max(c)
190 LC median of the derivative ave(r) - ave(c)

191 LC median of the derivative ave(r) + ave(c)

192 LC median of the derivative max(r) - max(c)
193 LC median of the derivative min(r) - min(c)
194 LC median of the derivative max(r) - min(c)
195 LC median of the derivative min(r) - max(c)
196 LC median of the derivative max(r) / max(c)
197 DLC mean ave(r) - ave(c)

198 DLC mean ave(r) + ave(c)

199 DLC mean max(r) - max(c)
200 DLC mean min(r) - min(c)
201 DLC mean max(r) - min(c)
202 DLC mean min(r) - max(c)
203 DLC mean max(r) / max(c)
204 DLC curve length ave(r) - ave(c)

205 DLC curve length ave(r) + ave(c)

206 DLC curve length max(r) - max(c)
207 DLC curve length min(r) - min(c)
208 DLC curve length max(r) - min(c)
209 DLC curve length min{r) - max(c)
210 DLC curve length max(r) / max(c)

211 DLC area ave(r) - ave(c)

212 DLC area ave(r) + ave(c)

213 DLC area max(r) - max(c)
214 DLC area min(r) - min(c)

215 DLC area max(r) - min(c)
216 DLC area min(r) - max(c)
217 DLC area max(r) / max(c)
218 DLC median of the derivative ave(r) - ave(c)

219 DLC median of the derivative ave(r) + ave(c)

220 DLC median of the derivative max(r) - max(c)
221 DLC median of the derivative min(r) - min(c)
222 DLC median of the derivative max(r) - min(c)
223 DLC median of the derivative min(r) - max(c)
224 DLC median of the derivative max(r) / max(c)
225 DLC min subtracted from the max ave(r) - ave(c)

226 DLC min subtracted from the max ave(r) + ave(c)

227 DLC min subtracted from the max max(r) - max(c)
228 DLC min subtracted from the max min(r) - min{c)
229 DLC min subtracted from the max max(r) - min(c)
230 DLC min subtracted from the max min(r) - max(c)
231 DLC min subtracted from the max max(r) / max(c)
232 DLC maximum ave(r) - ave(c)

233 DLC maximum ave(r) + ave(c)

234 DLC maximum max(r) - max(c)
235 DLC maximum min(r) - min(c)
236 DLC maximum max(r) - min(c)
237 DLC maximum min(r) - max(c)
238 DLC maximum max(r) / max(c)
239 DLC ini ave(r) - ave(c)

240 DLC ave(r) + ave(c)

241 DLC max(r) - max(c)
242 DLC min(r) - min(c)
243 DLC max(r) - min(c)
244 DLC min(r) - max(c)
245 DLC max(r) / max(c)
246 DLC mean of derivative ave(r) - ave(c)

247 DLC mean of derivative ave(r) + ave(c)

248 DLC mean of derivative max(r) - max(c)
249 DLC mean of derivative min(r) - min(c)
250 DLC mean of derivative max(r) - min(c)
251 DLC mean of derivative min(r) - max(c)
252 DLC mean of derivative max(r) / max(c)
253 LR mean ave(r) - ave(c)

254 LR mean ave(r) + ave(c)

255 LR mean max(r) - max(c)
256 LR mean min(r) - min(c)
257 LR mean max(r) - min(c)
258 LR mean min(r) - max(c)
259 LR mean max(r) / max(c)
260 LR curve length ave(r) - ave(c)

261 LR curve length ave(r) + ave(c)

262 LR curve length max(r) - max(c)
263 LR curve length min(r) - min(c)
264 LR curve length max(r) - min(c)
265 LR curve length min(r) - max(c)
266 LR curve length max(r) / max(c)
267 LR area ave(r) - ave(c)

268 LR area ave(r) + ave(c)

269 LR area max(r) - max(c)
270 LR area min(r) - min{c)
271 LR area max(r) - min(c)
272 LR area min(r) - max(c)
273 LR area max(r) / max(c)
274 LR amplitude of the peaks ave(r) - ave(c)

275 LR amplitude of the peaks ave(r) + ave(c)

276 LR amplitude of the peaks max(r) - max(c)
277 LR amplitude of the peaks min(r) - min(c)
278 LR amplitude of the peaks max(r) - min(c)
279 LR amplitude of the peaks min(r) - max(c)
280 LR amplitude of the peaks max(r) / max(c)

Fig.41: Continued

281 LR number of the peaks ave(r) - ave(c)

282 LR number of the peaks ave(r) + ave(c)

283 LR number of the peaks max(r) - max(c)
284 LR number of the peaks min(r) - min(c)
285 LR number of the peaks max(r) - min(c)
286 LR number of the peaks min(r) - max(c)
287 LR number of the peaks max(r) / max(c)
288 LR inhal divided by exhal ave(r) - ave(c)

289 LR inhal divided by exhal ave(r) + ave(c)

290 LR inhal divided by exhal max(r) - max(c)
291 LR inhal_divided by _exhal min(r) - min(c)
292 LR inhal_divided by exhal max(r) - min(c)
293 LR inhal_divided by exhal min(r) - max(c)
294 LR inhal_divided by exhal max(r) / max(c)
295 LR dampr ave(r) - ave(c)

296 LR dampr ave(r) + ave(c)

297 LR dampr max(r) - max(c)
298 LR dampr min(r) - min(c)
299 LR dampr max(r) - min(c)
300 LR dampr min(r) - max(c)
301 LR dampr max(r) / max(c)
302 LR ieie ave(r) - ave(c)

303 LR ieie ave(r) + ave(c)
304 LR ieie max(r) - max(c)
305 LR ieie min(r) - min(c)
306 LR ieie max(r) - min(c)
307 LR ieie min(r) - max(c)
308 LR ieie max(r) / max(c)
309 LR median of the derivative ave(r) - ave(c)

310 LR median of the derivative ave(r) + ave(c)

311 LR median of the derivative max(r) - max(c)
312 LR median of the derivative min(x) - min(c)
313 LR median of the derivative max(r) - min(c)
314 LR median of the derivative min(r) - max(c)
315 LR median of the derivative max(r) / max(c)
316 LR min subtracted from the max ave(r) - ave(c)

317 LR min subtracted from the max ave(r) + ave(c)
318 LR min subtracted from the max max(r) - max(c)
319 LR min subtracted from the max min(r) - min(c)
320 LR min subtracted from the max max(r) - min(c)
321 LR min subtracted from the max min(r) - max(c)
322 LR min subtracted from the max max(r) / max(c)
323 LR maximum ave(r) - ave(c)

324 LR maximurm ave(r) + ave(c)
325 LR maximum max(r) - max(c)
326 LR maximum min(r) - min(c)
327 LR maximum max(r) - min(c)
328 LR maximum min(r) - max(c)
329 LR maximum max(r) / max(c)
330 LR ini ave(r) - ave(c)

331 LR ave(r) + ave(c)
332 LR max(r) - max(c)
333 LR min(r) - min(c)
334 LR minimum max(r) - min(c)
335 LR ini min(r) - max(c)
336 LR minimum max(r) / max(c)
337 LR mean of derivative ave(r) - ave(c)

338 LR mean of derivative ave(r) + ave(c)
339 LR mean of derivative max(r) - max(c)
340 LR mean of derivative min(r) - min(c)
341 LR mean of derivative max(r) - min(c)
342 LR mean of derivative min(r) - max(c)
343 LR mean of derivative max(r) / max(c)
344 LR minampr ave(r) - ave(c)

345 LR minampr ave(r) + ave(c)
346 LR minampr max(r) - max(c)
347 LR minampr min(r) - min(c)
348 LR minampr max(r) - min(c)
349 LR inamg min(r) - max{c)
350 LR minampr max(r) / max(c)

351 UR mean ave(r) - ave(c)

352 UR mean ave(r) + ave(c)

353 UR mean max(r) - max(c)
354 UR mean min(r) - min(c)
355 UR mean max(r) - min(c)
356 UR mean min(r) - max(c)
357 UR mean max(r) / max(c)
358 UR curve length ave(r) - ave(c)

359 UR curve length ave(r) + ave(c)

360 UR curve length max(r) - max(c)
361 UR curve length min(r) - min(c)
362 UR curve length max(r) - min(c)
363 UR curve length min(r) - max(c)
364 UR curve length max(r) / max(c)
365 UR area ave(r) - ave(c)

366 UR area ave(r) + ave(c)

367 UR area max(r) - max(c)
368 UR area min(r) - min(c)
369 UR area max(r) - min(c)
370 UR area min(r) - max(c)
37 UR area max(r) / max(c)
372 UR amplitude of the peaks ave(r) - ave(c)

373 UR amplitude of the peaks ave(r) + ave(c)

374 UR amplitude of the peaks max(r) - max(c)
375 UR amplitude of the peaks min(r) - min(c)
376 UR amplitude of the peaks max(r) - min(c)
377 UR amplitude of the peaks min(r) - max(c)
378 UR amplitude of the peaks max(r) / max(c)
379 UR dampr ave(r) - ave(c)

380 UR dampr ave(r) + ave(c)

381 UR dampr max(r) - max(c)
382 UR dampr min(r) - min(c)
383 UR dampr max(r) - min(c)
384 UR dampr min(r) - max(c)
385 UR dampr max(r) / max(c)
386 UR number of the peaks ave(r) - ave(c)

387 UR number of the peaks ave(r) + ave(c)

388 UR number of the peaks max(r) - max(c)
389 UR number of the peaks min(r) - min{c)
390 UR number of the peaks max(r) - min(c)
391 UR number of the peaks min(r) - max(c)
39 UR number of the peaks max(r) / max(c)
393 UR inhal _divided by exhal ave(r) - ave(c)

394 UR inhal divided by exhal ave(r) + ave(c)

395 UR inhal divided by exhal max(r) - max(c)
396 UR inhal divided_by_exhal min(r) - min(c)
397 UR inhal divided by exhal max(r) - min(c)
398 UR inhal divided by exhal min(r) - max(c)
399 UR inhal_divided_by_exhal max(r) / max(c)
400 UR ieie ave(r) - ave(c)

401 UR eie ave(r) + ave(c)

402 UR eie max(r) - max(c)
403 UR eie min(r) - min(c)
404 UR ieie max(r) - min(c)
405 UR ieie min(r) - max(c)
406 UR ieie max(r) / max(c)
407 UR median of the derivative ave(r) - ave(c)

408 UR median of the derivative ave(r) + ave(c)

409 UR median of the derivative max(r) - max(c)
410 UR median of the derivative min(r) - min(c)
411 UR median of the derivative max(r) - min(c)
412 UR median of the derivative min(r) - max(c)
413 UR median of the derivative max(r) / max(c)
414 UR min subtracted from the max ave(r) - ave(c)

415 UR min subtracted from the max ave(r) + ave(c)

416 UR min subtracted from the max max(r) - max(c)
417 UR min subtracted from the max min(r) - min(c)
418 UR min subtracted from the max max(r) - min(c)
419 UR min subtracted from the max min(r) - max(c)
420 UR min subtracted from the max max(r) / max(c}

Fig.41: Continued

41 UR maximum ave(r) - ave(c)

422 UR maximum ave(r) + ave(c)

423 UR i max(r) - max(c)
424 UR maximum min(r) - min(c)
425 UR maximum max(r) - min(c)
426 UR maximum min(r) - max(c)
427 UR maximum max(r) / max(c)
428 UR ini ave(r) - ave(c)

429 UR ave(r) + ave(c)

430 UR max(r) - max(c)
431 UR min(r) - min(c)
432 UR max(r) - min(c)
433 UR min(r) - max(c)
434 UR max(r) / max(c)
435 UR mean of derivative ave(r) - ave(c)

436 UR mean of derivative ave(r) + ave(c)
437 UR mean of derivative max(r) - max(c)
438 UR mean of derivative min(r) - min(c)
439 UR mean of derivative max(r) - min(c)
440 UR mean of derivative min(r) - max(c)
441 UR mean of derivative max(r) / max(c)
442 UR minampr ave(r) - ave(c)

443 UR minampr ave(r) + ave(c)

444 UR minampr max(r) - max(c)
445 UR minampr ‘min(r) - min(c)
446 UR minampr max(r) - min(c)
447 UR minampr min(r) - max(c)
448 UR minampr max(r) / max(c)
449 GSR standard deviation ave(r) - ave(c)

450 GSR standard deviation ave(r) + ave(c)
451 GSR standard deviation max(r) - max(c)
452 GSR standard deviation min(r) - min(c)
453 GSR standard deviation max(r) - min(c)
454 GSR standard deviation min(r) - max(c)
455 GSR standard deviation max(r) / max(c)
456 HFEC standard deviation ave(r) - ave(c)

457 HFEC standard deviation ave(r) + ave(c)
458 HFEC standard deviation max(r) - max(c)
459 HFEC standard deviation min(r) - min(c)
460 HFEC standard deviation max(r) - min(c)
461 HFEC standard deviation in(r) - max(c)
462 HFEC standard deviation max(r) / max(c)
463 LC standard deviation ave(r) - ave(c)

464 LC standard deviation ave(r) + ave(c)

465 LC standard deviation max(r) - max(c)
466 LC standard deviation min(r) - min(c)
467 LC standard deviation max(r) - min(c)
468 LC standard deviation min{r) - max(c)
469 LC standard deviation max(r) / max(c)
470 DLC standard deviation ave(r) - ave(c)

471 DLC standard deviation ave(r) + ave(c)
472 DLC standard deviation max(r) - max(c)
473 DLC standard deviation min(r) - min(c)
474 DLC standard deviation max(r) - min{c)
475 DLC standard deviation min(r) - max(c)
476 DLC standard deviation max(r) / max(c)
477 LR standard deviation ave(r) - ave(c)

478 LR standard deviation ave(r) + ave(c)
479 LR standard deviation max(r) - max(c)
480 LR standard deviation min(r) - min(c)
481 LR standard deviation max(r) - min(c)
482 LR standard deviation min(r) - max(c)
483 LR standard deviation max(r) / max(c)
484 UR standard deviation ave(r) - ave(c)

485 UR standard deviation ave(r) + ave(c)

486 UR standard deviation max(r) - max(c)
4387 UR standard deviation min(r) - min(c)
488 UR standard deviation max(r) - min(c)
489 UR standard deviation min(r) - max(c)
490 UR standard deviation max(r) / max(c)

91 HFEC coeff of ARmod ave(r) - ave(c)
492 HFEC coeff of ARmod ave(r) + ave(c)
493 HFEC coeff of ARmod max(r) - max(c)
494 HFEC coeff of ARmod min(r) - min(c)
495 HFEC coeff of ARmod max(r) - min(c)
496 HFEC coeff of ARmod min(r) - max(c)
497 HFEC coeff of ARmod max(r) / max(c)
498 HFEC coeff of ARmod ave(r) - ave(c)
499 HFEC coeff of ARmod ave(r) + ave(c)
500 HFEC coeff_of ARmod max(r) - max(c)
501 HFEC coeff of ARmod min(r) - min(c)
502 HFEC coeff of ARmod max(r) - min(c)
503 HFEC coeff_of ARmod min(r) - max(c)
504 HFEC coeff of ARmod max(r) / max(c)
505 HFEC coeff_of ARmod ave(r) - ave(c)
506 HFEC coeff of ARmod ave(r) + ave(c)
507 HFEC coeff of ARmod max(r) - max(c)
508 HFEC coeff of ARmod min(r) - min(c)
509 HFEC coeff_of ARmod max(r) - min(c)
510 HFEC coeff of ARmod min(r) - max{c)
511 HFEC coeff_of ARmod max(r) / max(c)
512 HFEC coeff of ARmod ave(r) - ave(c)
513 HFEC coeff of ARmod ave(r) + ave(c)
514 HFEC coeff of ARmod max(r) - max(c)
515 HFEC coeff of ARmod min(r) - min(c)
516 HFEC coeff of ARmod max(r) - min(c)
517 HFEC coeff_of ARmod min(r) - max(c)
518 HFEC coeff of ARmod max(r) / max(c)
519 HFEC coeff of ARmod ave(r) - ave(c)
520 HFEC coeff_of ARmod ave(r) + ave(c)
521 HFEC coeff_of ARmod max(r) - max(c)
522 HFEC coeff_of ARmod min(r) - min(c)
523 HFEC coeff of ARmod max(r) - min(c)
524 HFEC coeff_of ARmod min(r) - max(c)
525 HFEC coeff of ARmod max(r) / max(c)
526 HFEC coeff_of ARmod ave(r) - ave(c)
527 HFEC coeff_of ARmod ave(r) + ave(c)
528 HFEC coeff of ARmod max(r) - max(c)
529 HFEC coeff of ARmod min(r) - min(c)
530 HFEC coeff of ARmod max(r) - min(c)
531 HFEC coeff_of ARmod roin(r) - max(c)
532 HFEC coeff_of ARmod max(r) / max(c)
533 HFEC coeff_of ARmod ave(r) - ave(c)
534 HFEC coeff of ARmod ave(r) + ave(c)
535 HFEC coeff of ARmod max(r) - max(c)
536 HFEC coeff_of ARmod min(r) - min(c)
537 HFEC coeff of ARmod max(r) - min(c)
538 HFEC coeff of ARmod min(r) - max(c)
539 HFEC coeff of ARmod max(r) / max(c)
540 HFEC coeff_of ARmod ave(r) - ave(c)
541 HFEC coeff_of ARmod ave(r) + ave(c)
542 HFEC coeff_of ARmod max(r) - max(c)
543 HFEC coeff_of ARmod min(r) - min(c)
544 HFEC coeff of ARmod max(r) - min{c)
545 HFEC coeff_of ARmod min(r) - max(c)
546 HFEC coeff of ARmod max(r) / max(c)
547 HFEC coeff of ARmod ave(r) - ave(c)
548 HFEC coeff of ARmod ave(r) + ave(c)
549 HFEC coeff_of ARmod max(r) - max(c)
550 HFEC coeff of ARmod min(r) - min(c)
551 HFEC coefl of ARmod max(r) - min(c)
552 HFEC coeff of ARmod min(r) - max(c)
553 HFEC coeff of ARmod max(r) / max(c)
554 HFEC coeff of ARmod ave(r) - ave(c)
555 HFEC coeff of ARmod ave(r) + ave(c)
556 HFEC coeff of ARmod max(r) - max(c)
557 HFEC coeff of ARmod min(r) - min(c)
558 HFEC coeff of ARmod max(r) - min(c)
559 HFEC coeff of ARmod min(r) - max(c)
560 HFEC coeff of ARmod max(r) / max(c)

Fig.41: Continued

561 | HFEC fund fmax_cross_com ave(r) - ave(c)
562 HFEC fund_finax_cross_cormr ave(r) + ave(c)
563 HFEC fund fimax_cross_com max(r) - max(c}
564 HFEC fund fmax_cross_corr min(r) - min(c)
565 HFEC fund_finax_cross_corr max(r) - min(c)
567 HFEC fund finax_cross_com min(r) - max(c)
568 LR fund_fimax_cross_corr max(r) / max(c)
569 LR fund_fmax_cross_corr ave(r) - ave(c)
570 LR fund_finax_cross_corr ave(r) + ave(c)
571 LR fund_finax_cross_cormr max(r) - max(c)
572 LR fund_finax_cross_com min(r) - min(c)
573 LR fund_fimax_cross_comr max(r) - min(c)
574 LR fund_finax_cross_comr min(r) - max(c)
575 HFUR max_cross_correlation max(r) / max(c)
576 HFUR max_cross_correlation ave(r) - ave(c)
577 HFUR max_cross_correlation ave(r) + ave(c)
578 HFUR max_cross_correlation max(r) - max(c)
579 HFUR max_cross_correlation min(r) - min(c)
580 HFUR max_cross_correlation max(r) - min(c)
581 HFUR max_ctoss_correlation min(r) - max(c)
582 HFUR lag_max_cross_correlation max(r) / max(c)
583 HFUR lag_max_cross_correlation ave(r) - ave(c)
584 HFUR lag_max_cross_correlation ave(r) + ave(c)
585 HFUR lag_max_cross_correlation max(r) - max(c)
586 HFUR lag_max_cross_comrelation min(r) - min(c)
587 HFUR lag_max_cross_correlation max(r) - min(c)
588 HFUR lag_max_cross_correlation min(r) - max(c)
589 HFUR min_cross_correlation max(r) / max(c)
590 HFUR min_cross_correlation ave(r) - ave(c)
591 HFUR min_cross_correlation ave(r) + ave(c)
592 HFUR min_cross_correlation max(r) - max(c)
593 HFUR min_cross_comelation min(r) - min(c)
594 HFUR min_cross_correlation max(r) - min(c)
595 HFUR min_cross_correlation min(r) - max(c)
596 HFUR lag_min_cross_correlation max(r) / max(c)
597 HFUR lag_min_cross_comelation ave(r) - ave(c)
598 HFUR lag_min_cross_correlation ave(r) + ave(c)
599 HFUR lag_min_cross_correlation max(r) - max(c)
600 HFUR lag_min_cross_correlation min(r) - min{c)
601 HFUR lag_min_cross_comrelation max(r) - min(c)
602 HFUR lag_min_cross_correlation min(r) - max(c)
603 HFEC spec HFEC fund freq max(r) / max(c)
604 HFEC spec_HFEC_fund freq ave(r) - ave(c)
605 HFEC spec HFEC fund_freq ave(r) + ave(c)
606 HFEC spec HFEC fund freq max(r) - max{c)
607 HFEC spec HFEC fund_freq min(r) - min(c)
608 HFEC spec HFEC fund_freq max(r) - min(c)
609 HFEC spec HFEC fund_freq min(r) - max(c)
610 HFEC spec HFEC 2nd_harmonic max(r) / max(c)
611 HFEC spec HFEC_2nd_harmonic ave(r) - ave(c)
612 HFEC spec HFEC 2nd_harmonic ave(r) + ave(c)
613 HFEC spec HFEC 2nd_harmonic max(r) - max(c)
614 HFEC spec HFEC 2nd_harmmonic min(r) - min(c)
615 HFEC spec HFEC 2nd_harmonic max(r) - min(c)
616 HFEC spec_HFEC 2nd_harmonic min(r) - max(c)
617 UR spec UR fund_frequency max(r) / max(c)
618 UR spec UR fund frequency ave(r) - ave(c)
619 UR spec UR_fund_frequency ave(r) + ave(c)
620 UR spec_ UR_fund_frequency max(r) - max(c)
621 UR spec UR fund frequency min(r) - min{c)
622 UR spec UR _fund frequency max(r) - min(c)
623 UR spec UR fund_frequency min(r) - max(c)
624 UR spec UR_2nd_harmonic max(r) / max(c)
625 UR spec_UR_2nd_harmonic ave(r) - ave(c)
626 UR spec_UR_2nd_harmonic ave(r) + ave(c)
627 UR spec_UR_2nd_harmonic max(r) - max(c)
628 UR spec_UR_2nd_harmonicé min(r) - min(c)
629 UR spec_UR_2nd_harmonic max(r) - min(c)
630 UR spec UR_2nd_harmonic min(r) - max(c)

631 HFUR max_cross_spec_density max(r) / max(c)
632 HFUR max_cross_spec_density ave(r) - ave(c)
633 HFUR max_cross_spec_density ave(r) + ave(c)
634 HFUR max_cross_spec_density max(r) - max(c)
635 HFUR max_cross_spec_density min(r) - min(c)
636 HFUR max_cross_spec_density max(r) - min(c)
637 HFUR max_cross_spec_density min(r) - max(c)
638 HFEC coherency HFEC & UR ff max(r) / max(c)
639 HFEC coherency HFEC & UR ff ave(r) - ave(c)
640 HFEC coherency HFEC & UR ff ave(r) + ave(c)
641 HFEC coh y_HFEC & UR ff max(r) - max(c)
642 HFEC coherency HFEC & UR ff min(r) - min(c)
643 HFEC coherency HFEC & UR ff max(r) - min(c)
644 HFEC coherency HFEC & UR ff' min(r) - max(c)
645 HFEC coherency HFEC & UR sh max(r) / max(c)
646 HFEC coherency HFEC & UR sh ave(r) - ave(c)
647 HFEC coherency HFEC & UR sh ave(r) + ave(c)
648 HFEC h HFEC & UR sh max(r) - max(c)
649 HFEC coherency HFEC & UR sh min() - min(c)
650 HFEC coherency HFEC & UR sh max(r) - min(c)
651 HFEC h y_HFEC & UR sh min(r) - max(c)
652 GSR max_min_ISD_cont & relv mean(r & ¢)
653 GSR max_min_ISD cont & relv max(r & ¢)
654 GSR max_min_ISD_cont & relv min(r & ¢)
655 GSR freq_max_ISD mean(r & ¢)
656 GSR freq_max_ISD max(f & ¢
657 GSR freq_max_ISD min(r & ¢)
658 GSR area_under ISD mean(r & ¢)
659 GSR area_under ISD max(r & ¢)
660 GSR. area_under_ISD min(r & c)
661 HFEC max_min_ISD mean(r & ¢)
662 HFEC max_min_ISD max(& ¢)
663 HFEC max_min_ISD min(r & ¢)
664 HFEC freq_max_ISD mean(r & ¢)
665 HFEC freq_max_ISD max(r & ¢)
666 HFEC freq_max_ISD min(r & ¢}
667 HFEC area_under ISD mean(r & ¢)
668 HFEC area_under ISD max(r & ¢)
669 HFEC area_under ISD min(r & ¢)

Non-deceptive Deceptive 1 Deceptive 2 Deceptive 3
QQ8RY0I10.011 QQ4Q1083.011 QQ7LX5Q0.021 QQ8RAJOC.011
QQ8R9010.021 QQ4Q1083.021 QQ7LX5Q0.031 QQ8RAJ0C.021
QQ8R90I0.031 QQ4Q1083.031 QQ7MN2Y0.011 QQ8RAJ0OC.031
QQ95LUIT.011 QQ4Q3MDC.011 QQ7MN2Y0.021 QQYEUKVT.011
QQ95LUIT.021 QQ4Q3MDC.021 QQ7MN2Y0.031 QQI9EUKVT.021
QQ95LUIT.031 QQ4Q3MDC.031 QQ7TC5UF.011 QQYEUKVT.031
QQAURNUS.021 QQ51DE36.011 QQ7TC5UF.021 QQ9100X0.021
QQAURNUS.031 QQS51DE36.021 QQ7TC5UF.031 QQ9I00X0.041
QQAV53P6.011 QQ51DE36.041 QQ7TQVER.011 QQ9ISOWSL.011
QQAVS53P6.021 QQ6RQGH6.011 QQ7TQVER.021 QQ9ISOWSL.021
QQAV53P6.031 QQ6RQGH6.021 QQ7TQVER.031 QQ9SOWSL.031
QQBQ4SHI.011 QQ6RQGHS6.031 QQ7TVADC.011 QQ9SQIK9.011
QQBQ4SHI.021 QQ6RQGH6.041 QQ7TVADC.021 QQ9SQIK9S.021
QQBQ4SHI.031 QQ6T7110.011 QQ7TVADC.031 QQ9SQIK9.031
QQBSS7WT.011 QQ6T7110.021 QQ7U2T4R.011 QQ9WOBOIF.011
QQBSS7WT.021 QQ6T7110.031 QQ7U2T4R.021 QQIWOB9IF.031
QQBSS7TWT.031 QQ6Z591G.011 QQ7U2T4R.031 QQIWOBOIF.041
QQ70XM60.021 QQ6Z591G.021 QQ7YP7QU.011 QQIU4FMU.011
QQ7RHORO.011 QQ6Z591G.031 QQ7YP7QU.021 QQIU4FMU.021
QQ7RHORO.021 QQ7PP9B9.011 QQ7YP7QU.031 QQIU4FMU.031
QQ7RHORO.031 QQ7PP9B9.021 QQ7YZ0J3.011 QQ9Y_SVF.011
QQ7R51P9.011 QQ7PP9B9.031 QQ7YZ0J3.021 QQ9Y_SVF.021
QQ7R51P9.021 QQ7PDU1X.011 QQ7YZ0J3.031 QQ9Y_SVF.031
QQ7R51P9.031 QQ7PDU1X.021 QQ8_0DPT.011 QQI9YH3QF.011
QQ9TDSP3.011 QQ7PDU1X.031 QQ8_0DPT.021 QQ9YH3QF.021
QQ9TDSP3.021 QQ7_PIPF.011 QQ8_0DPT.031 QQIYH3QF.031
QQ9TDSP3.031 QQ7_PIPF.021 QQ8_0DPT.041 QQA2TT4C.011
QQAS0OWOI.011 QQ7_PIPF.031 QQ8_2UQ9.011 QQA2TT4C.021
QQA8S0WOIL.021 QQ7_JT70.011 QQ8_2UQ9.021 QQA2TT4C.031
QQAB0OWOI1.031 QQ7_JT70.021 QQ8_2UQ9.031 QQA3HIRX.011
QQBT2206.011 QQ7_JT70.031 QQ8001G6.011 QQA3HIRX.021
QQBT2206.021 QQ738DYX.011 QQ8001G6.021 QQA3HIRX.031
QQBT2206.031 QQ738DYX.021 QQ8001G6.031 QQA32UTF.011
QQB0Y0_9.011 QQ738DYX.031 QQ820IU9.011 QQA32UTF.021
QQB090_9.021 QQ75ULPI9.011 QQ8201U9.021 QQA32UTF.031
QQB090_9.031 QQ75ULP9.021 QQ8201U9.031 QQA6U_IF.011
QQBC7PP6.011 QQ75ULP9.031 QQ82SUTX.011 QQA6U_IF.031
QQBC7PP6.021 QQ79_EYF.011 QQ828UTX.021 QQA6U_IF.041
QQBC7PP6.031 QQ79_EYF.021 QQ82SUTX.031 QQAMA4E3L.011
QQCHCK_0.011 QQ79_EYF.031 QQ860ZNU.011 QQAMA4E3L.021
QQCHCK_0.021 QQ7BGDML.011 QQ860ZNU.021 QQAM4E3L.031
QQCHCK_0.031 QQ7BGDML.021 QQ860ZNU.031 QQARF2_X.011
QQCDTKP0.011 QQ7BGDML.031 QQ89U_ZR.011 QQARF2_X.021
QQCDTKP0.031 QQ7ETC81.011 QQ89U_ZR.021 QQARF2_X.031
QQCDTKP0.041 QQ7ETCS8I.021 QQ89U_ZR.031 QQAWA38X.011
QQCM5Y56.011 QQ7ETC81.031 QQ8ATU26.011 QQAWA38X.021
QQCQQT8Y.011 QQ7JAQCS.011 QQ8ATU26.021 QQAWA38X.031
QQCQQT8Y.021 QQ7JAQCS.021 QQ8ATU26.031 QQAYXZGU.011
QQCQQT8Y.031 QQ7JAQCS.031 QQ8FGMVI.011 QQAYXZGU.021
QQCQQT8Y.041 QQ7LX5Q0.011 QQ8FGMVI1.021 QQAYXZGU.031

Fig.42: List of polygraph files used in this experiment

84

6.3. USER INTERFACE

For an automated polygraph system as a real product, the existence of an user-friendly
interface is unavoidable. MATLAB software environment provide an easy-to-use toolbox
for creating various kinds of interactive interface classes. The following figure shows an
interface used in one of my representations. This was made for a technically oriented user
who is familiar with the algorithm. A simpler black-box version of a polygraph system,

appropriate to the user's requests, can likewise be programmed.

= O 200 Sha
“ RN _\%s!*? DRI
\\“ I, N
5 ~-~S$m=\ o3 X2 PRI AN B
L IRNRRR R z‘sm“““\“b\..o\“\z*“ R W
A c‘ SIRNENS R A RASSS ,.“““;““:._ AR
IRGEEER : SR
‘&&“;\ “‘Stttm“t& T 3 f i ARNRIAR
R BN K‘ s
) SN N
LHON RN (&'\u c
SARTERR SENVANY
SRR A 0 U5 a
: R 3
S

A

:
S SRS

R B
\\\\.\{\\“\\\ “§tt-.mm\m
RS
R X3 TR
RS = SRR 3 :
:: ‘G\‘,\ o0 AR DOTTLIR AN S NEANH ST o
R 3 R \.\\.\.\\\\\\\\\\.\.\.\.\s\\\.\\\\\.\.\.&\\32&“\\“&\\\ m“&&\z\

A L LR R A S A 23
RARRAR \V\.\.\.ﬁ.\\\v. o3 “.“““

R
R
\\l\.§“\\\“\.t\ z\\\\\\\\\

S
e R AR
S eeer—
SRR e
A T
R
R e
‘\“m““zmm;m“““““w:“““mN““t

A
TR TR S AR
S

R{G{t{({{l“.\ &a\?{tﬁ\“

REEEELEE ELEERL
S

SRR R R
RRINRN WY RRRRER
R N R T Y
R A R T R R A R R
tttt~.3&tttttttk&t&&t&t&}-}m&&t&& THRERE
SRR
R 3 B

R
8 ..t‘:.'c:t:ktt&&‘
\.\h‘\\\\ ASMEATIIAAAN o
T s;“m,“w.:etm\
e
AR RS
RS B TERRREEER
S SRR
S 3 \m&m\m\m N

R. 'y
o - 0

B
R peaaey &t\\ ﬁ&-. R
e R e

R A T AR
S T 05
R R
RIS

N

WY A
“w.“s““w.“w.s«“““\«\&“\“\&t“‘

S
T B S D 0 5 S S XL SN S SRR
S
R e

Fig.43: An example for a technical user interface

85

6.4. PROGRAM LISTINGS

(Implementation in MATLAB)

86

% THIS PROGRAM CALCULATESTHE CLUSTER CENTERS FOR
% A MULTIDIMENSIONAL FCM - C=2, CONST.

function V = ¢_center(X, U, m)
[colE, rowE] = size(X);

k=11owE,
%for the 1th class:
Vi_numerator =U(LK)."m * X(K);

% (*r=>(*):b the sum” is jcalty
% included within the matrix myitiplication.

V(1,)) = V1_numerator / sum(U(1Lk)."m),
% V(1,) (and V1_numerator] is 8 n-dimensional row-vector;
% n represents the number of the clustering features(n=30).

%for the 2nd class:

V?2_numerator =U(2,k)."m * X(.kY;
% (*)=>(*). ..se¢ above.

V(2,) = V2_numerator / sum(U(2.%)."m),
% This is & n-dimensional row-vector and the cluster-center
% of the 2nd class.

V=V, % {nxc] matrix
retum,

% FUZZY C-MEANS ALGORITHM FOR MULTI-DIMENSIONAL FCM.

%function best_Uik = fc_means(m, epsilon,X)
function [best_Uik, z] = fc_means(m, epsilon,X)

% function best_Uik = fc_means(m, epsilon)

%, function [best_Uik, V, X] = fc_means(m, epsilon)
% think about the X

Joad init_u; % start with the initialization of the memb_fct
% (Uik => Vi)

% load init_v, % or with the cluster centers
% (Vi=>UiK)

%!load set3]; % including the data X respect. X1, X2, ...
%X=featmat;
%load set3me;X=Xselect;

%format long; 4 avoid errors by visual comparing the numbers
J_m = 100000000, % to make sure the startis ok.

z=0,

while J_m > epsilon

V=c_center(X, U, m);
U=memb_fct(X, V, m),

Jtemp=1J_m;
J_m=j_mdim(X, V, U, m),

if epsilon <= 0.000005
if (abs(J_m - Jtemp) <= 00000000001),
%if J_m == Jtemp, % to terminate the loop by reaching
% the mintmum of J_m.
break,
end

if (abs(J_m - Jtemp) <= .0001),%-—o0k.
%if J_m == Jtemp, % 10 terminate the loop by reaching
% the minimum of J_m.

break,

end

end

% t=abs(U - temp), % tol value for the i
z=z+1;

if rem(z,10) =<0

fprintf(\n);

else

fprintfl’. 9;

end
end

fprintf\n); fprint{
best Uk=U,

\n);

87

%Vnew =V,
¢4 recall the extrem values: J_m =7.2308¢+003

returmn;

 THIS PROGRAM CALCULATES THE OBJECTIVE FUNCTION

% FOR THE MULTIDIMENSIONAL FCM.
function J_m = j_mdim(X, V, U, m)

{colE rowE] = size(X);

k= lT10WE;

S4for the 1th class:
VlasMatrix = V(;,1)*ones(1,1owE);

templ = (X(:X) - VlasMatrix Y * (X(.K) - ViasMatrix),
temptl =((U(1,)"m) * (diagltemp1)));

J_out! = sum(templl),

%for the 2nd class:

V2asMatrix = V(;,2)"ones(l rowE}),

temp2 = (X(X) - V2asMatrix Y * (X(.X) - V2asMatrix),
temp22 = ((U(2,)"m) .* (diag(temp2)));

J_out2 = sum(temp22),

I_m=1J_outl +J_out2,
retum,

* to avoid time-crunching for-loops

% trick: matrix-operation is faster;the sought norm is
% automatically the diagonal of templ;

% to avoid time-crunching for-loops

% see above

% THIS PROGRAM CALCULATES THE MEMBERSHIP VALUES FOR

% THE MULTIDIMENSIONAL FCM.
function U = memb_fet(X, V, m)

[colE rowE] = size(X);

k=1710WE;
%for the 1th class:

VliasMatrix = V(;,1)*ones(} yowE),
% to avoid time-crunching for-loops

templ = (X(,k) - VlasMatrix) * (X(k) - ViasMatrix);

% trick: matrix-operation is faster;the sought norm is

% automatically the diagonal of templ;
U_num(1 k) = (diag(templ)'} * (-1/m-1));
%for the 2nd class:

V2asMatrix = V(;,2)*ones(l fowE),
% to avoid time-crunching for-loops

temp2 = (X(:K) - V2asMatrix ' * (X(:) - V2asMatrix),
% see above

U_num(2.%) = (diag(temp2)) .~ (-1m-1));
U@,)=U_num(1,) J (U_num(1K) + U_num(@k)),
U2,)=U_num@k) / (U_num(1¥) +U_num(zk));

% If there is a third class, * U_num(3)X) ... "
% must be also considered.

retumn;

% FAST MULTIDIMENSIONAL EVALUATING PROGRAM

clear best_Uik,
%——without plots

best_Uik = fc_means(5, 0.0000005, Xselect),

figure(1);clg:hold on;

8s=1:100;
plot(ss,best_Uik(1,),"+");plot(ss,best_Uik(2,),"*b);
Yeplot(ss,best_Uik(3,:),*b)

pause;

88

wrong_dcps =0;
wrong_nons =0,
figure(2),clg;hold on,
for s=1:100
if best_Uik(2,8)>=.5
plot(s,best_Uik(2,5),"*b7;

if s>50
wrong_dcps=wrong_dcps+1;
end
else
plot(s,best_Uik(2,5),'+);
if $<=50
wrong_nons=wrong_nons+1;
end
end
end
wpercent = wrong_dcps/50*100;

%fprintf’'wrong_dcps, percent)
%|wrong_dcps, wpercent]
npercent = wrong_nons/50*100,
%fprintf'wrong_nons, npercent’)
%[wrong_nons, npercent]

nn=(100-npercent);
ww=(100-wpercent);

fprintfC\n); fprintfRIGHT DETECTIONS?);
fprintf\n), fprintfl\n, fprintfnD-clust D_clust);

{an ww],

% USER INTERFACE
% Program Bl1. This program creates the start button.

figure(1);clg;
set(gef,'color',[1 0 1])

button] = uicontrol(gef,...
'style’,')push’,...
*position’,[195 150 75 75],...
‘string’, START., ...
‘callback’,bt_choic?),

% USER INTERFACE
%Program B2. This program displays choices to run the various programs.

cif reset
set(gef, color',[0 0 1]

itleCONE-DIMENSIONAL MULTI-DIMENSIONAL")
axis off

frm?2 = uicontrol(gcf,...
'style’ ‘text’,...
‘position’,[25 40 155 200]),

2 = uicontrol(gef,...

'style’,text,...

'string’, FEATURE ELIMINATION.,...
‘position’,[25 215 155 40]);

frm4 = uicontrol(gef,...
‘style’, frame’,...
‘position’,[25 270 155 70D,

tt4 = uicontrol(gef,...

'style’,‘text’,...

'string’, FUZZY C MEANS WITH EVALUATION,,...
‘position’,[35 288 125 45));

button3 = uicontrol(gcf,...
'style’,)push’,...
‘position’,[38 275 125 25],...
'string’, INITIAL TEST,...
‘callback’,mega_tst);

frm = uicontrol(gcf....
'style’,'frame’,...
‘position’,[205 40 95 185]);

tt = uicontrol(gcf,...
'style’ ‘text’,...

89

'string’, POLYGRAPH DATA,...
‘position’,[207 165 85 40]);

button!3 = uicontrol(gef,...
'style’,push’,...
‘position’,[210 75 80 25],...
'string’, DATA 3',...
‘callback’,load fix39;

button14 = uicontrol(gct,...
'style’ ‘push,...
‘position’,[210 105 80 25],...
'string,'DATA 2,...
‘callback’,10ad fx27);

button]5 = uicontrol(gef,...
'style’,pusk,...
‘position’,[210 135 80 25},...
'string’'DATA ',
‘callback’,Toad fix1);

button16 = uicontrol(gef,...
'style’,/push’,...
‘position’,{210 45 80 25],...
'string’,CLEAR,...
‘callback’, clear’),

button17 = uicontrol(gef,...
‘style’,'push’,...
‘position’,[45 200 125 25],...
‘string’, BOTH >60%,...
‘caliback’,nega_i);

button18 = nicontrol(gef,...
'style’,push,...

‘position’,[45 150 125 25),...
'string’,>80% AND >50%,...
‘callback’,/mega_ii);

button!9 = uicontrol(gef,...
'style’,push,...

‘position’,[45 100 125 25),...
'string’,>50% AND >80%),...
‘callback’,'mega_iii?);

button20 = uicontrol(gef,...
'style’,'push’,...
‘position’,[45 50 125 25),...
'string’, ONE >98%,...
‘callback’,'mega_iv),

frm3 = uicontrol(gef,...
'style’ frame’,...
‘position’,[320 40 165 185]);

3 = uicontrol(gef,...
'style’text’,...

'string’, SEARCH FOR BEST COMBINATION;,...

‘position’,[350 150 120 65]);

button2! = uicontrol(gef,...
‘style’,push’,...

‘position’,[318 230 192 25],...

'string’, FEATURE COMBINATION.,...
‘caliback,'initfast’);

frm$ = uicontrol(gcf,...
‘style’, frame’,...
‘position’,{318 260 140 85]);

S = uicontrol(gef,...
'style’,text’,...

'string, FUZZY C MEANS WITHOUT EVALUATION....

‘position’,[332 275 115 65]);

buttond = uicontrol(gef,...
'style’, push’,...
‘position’,[325 265 125 25],...
‘string’, ALGORITHM,, ...
‘callback’,'fc_means"),

button22 = uicontrol(gef,...
'style’,push’,...
‘position’,[337 125 100 25},...
'string’,GENETIC,...
‘callback’,geneticd),
button23 = uicontrol(gef,...

‘style’,'push’,...
‘position’,[337 95 100 25],...

90

'string’, RANDOM,,...
‘callback’, Tandom’);

button24 = uicontrol(gcf,...

'style’ push’,...

‘positiont’,[337 65 145 25],...

‘string’, PSEUDO-EXHAUSTIVE',...
‘callback’,'featured’),

% THIS PROGRAM COMPARES RESULTS BY DIFFERENT SET-UPS
% OF THE 'm". AN EXAMPLE:

w_comp~2zer0s(1,669),
n_comp=2er0s(1,669);

index={I 35151719 22 29 30 31 33 36 37 38 39 40 50];

selindex=1:17,
w_comp(index) = selw_p tindex) - w_p index),
n_comp(index) = seln_p lindex) - n_p index);

Rindex={70 141 155 177 197 200 202 211 214 216 235 449 450 453 458 462 600];
selindex=18:34,

w_ocomp(Rindex) = setw_percent(selindex) - w. _percent(Rindex),
n_comp(Rindex) = seln_percent(selindex) - n, _percent(Rindex);

Y%for 11 newis;

newindices={4 12 18 52 68 82 176 395 451 459 460],
dices):

MY

}=w_r »

w_comp(
n_comp(newindices) =n_p indices),

in={1345121517 18 192229 3031 33 36 37 38 39 40 50 52 68 7082 141 155 ..

176 177 197 200 202 211 214 216 235 395 449 450 451 453 458 459 460 462 600];

{in;m2w_percent,m2n_percent,w,w_comp(in} ;n_comp(n))

% ANOTHER EXAMPLE:

w_comp=zeros(1,669),
n_comp=zeros(1,669),

index={1 345121517181922293031 3336 3738394050 5268 ...
70 82 141 155 176 177 197 200 211 214 216 235 395 449 450 451];
selindex=1:38,;

w_comp(index) = selw_percent(selindex) - w_percent(index);
n_comp(index) = seln_percent(selindex) - n, _percent(index),

Rindex={453 458 459 460 462 600];
selindex=40:45;

w_comp(Rindex) = selw_percent(selindex) - w. _percent(Rindex);
n_comp(Rindex) = seln_percent(selindex) - n _percent(Rindex),

%for 1 newy;

newindices={452];

w_comp(newindices) =w_p indices),
n_comp{newindices) =n_p indices),

in={1345121517181922293031333637383940505268 ...
70 82 141 155176 177 197200 211 214 216 235 395 449 450 451 452 ...
453 458 459 460 462 600];

[in;m2w_percent;m2n_percent,w;w_comp(in) \n_compGn)]'

% THIS PROGRAM SELECT AND EVALUATE FEATURE GROUPS
% ACCORDING TO THE THRESHOLD.

dimension=669;

0,

for g=1:dimension

%—reemmmeerenee— ATTENTION: Change parameters for m=3...

i (n_p (§)<=40) & (W_p B)<=40))
=

m2wrong_dcps(ly=wrong_dcps();
m2w_percent()y=w_percent(g),

m2w_ok()=100-m2w_percent()),

91

m2wrong_nons(=wrong_nons(g);
m2n_percent(l)=n_percent(g),

m2n_ok()=100-m2n_percent(),
m2z(=2g);

if{ (n_p ®)<=25)|(w_p ®<=25))
w(=1.1111;

else

w(=0,

end

end

end
1

fprintf’m2ft_#, m2wrong_dcps, m2w_ok, m2wrong_nons, m2n_ok, m2iterations, bests”);
h=11; .

% THIS PROGRAM REPRESENTS ONE THE RANDOM SEARCH
% FOR 4-TUPLE FEATURE COMBINATIONS.

indi=0,
for =1:10000

aaa = round(10*rand(1,4)); %------——4q*R-&-size of no=14
% if ana(1)>=7, aaa(1)=eaa(1)-5;end,
% if aaa(2)>=7, aaa(2)=aaa(2)-S;end,
% if a8a(3)>=7, aaa(3)=e2a(3)-5;end;

if aaa(1)==0, aaa(1)=11;end,
if aaa(2y=0, aaa(2)=12;end;
if aaa(3)==0, aga(3)=13;end;
if aaa(4)==0, aaa(4)=14;end;

while ((aaa(1y=2aa(2)) | (aaa(1)y=a22(3)) | (aaa(2y=e22(3))...
| (a2a(2y=a22(4)) | (aaa(ly=aaa(4)) ..

| (aaa(3y=eaa(4)))
8aa = round(10*rand(1,4)),
% if aaa(1)>=7, saa(1)=esa(l)-5;end;
% if 8aa(2)>=7, aaa(2)=aaa(2)-5;end,
% if aaa(3)>=7, aaa(3)=aaa(3)-5;end;
if aaa(1)y==0, aaa(l)=11;end;
if 2aa(2)==0, aaa(2)=12;end;
if aaa(3)==0, aaa(3)=13;end;
if 2aa(4)==0, saa(4)=14;end,
end,
i
indi,
823,
clear Xselect,
Xselect=Xsel(aaa,’);,
initfast;

" oif*

%rrrrere—-e- ATTENTION: LIMITATIONS

%if(((n>=80) & (ww>=80)) | ((m>=84)|(ww>=84)))
i (n>=81)&(ww>=81)) | (Nn>=8E)&(Ww>=T9))) Yo && 4°ft x3m5m2
%if ((n>=70) & (ww>=80)) Yor———4*ft xIm5
indi=indi+1;
al_combin(indi) = eaa(l);
22_combin(indi) = asa(2);
43_combin(indi) = aaa(3);
84_combin(indi) = aaa(4);%---eeq*ft
n_combres(indi) = nn;
w_combres(indi) = ww,
fprintfl>>>555355555555>553555>555555555>>>),
size(al_combin)
fprintf>>>> SISPHPIHP>SY),

end

=lindi;
[1_combing)
a2_combin()

92

a3_combin(j)
a4_combin(j)
n_combres(j)
w_combres(j)]'

% This program exhaustively tests all possible combinations of

% size eight in x3 from the number of features. It then records the ones
% that meet the if-then criteria below.

% clear(init’) for normal initialization.

load x3

features={8] 111 450 452 197 459 30]
n=length(features)

for f=I'n
Xsel(f,1:100)=x3(features(f),1:100),

end

if existCinit)==1
% program continuation. No need to initialize other variables.
il=init(1);
i2=init(2);
3=init(3),
4=nit(4),
i5=init(5);
16=Init(6),
7=init(7);
i8=init(8),

% initialize all variables.
indi=0,
record={J;
il=1;
2=2;
i3=3,
i4=4,
15=5,
i6=6;
i7=7,
i8=8;

end

while it<=n-7
while i2<=n-6
while i3<=n-5
while i4<=n-4
while i5<=n-3
while i6<=n-2
while i7<=n-1
while i8<=n

aga={il 2345617 i8]
indi

clear Xselect;
Aselect=Xsel(aaa,’);

initfast;

%-—~——————ATTENTION: LIMITATIONS " %if
ave = (nn+ww)/2;

if ((nn>=81)&(ww>=81)) | (ave>=83))
indi=indi+1;
record={record ; features(aaa) nn ww};
FHNtT>>>SOS5>553555555 5555555555555,
[features(aas) nn ww]

end

18=i8+1;
end % end i8 loop
i7=7+1;
B=iT+1,
end % end i7 loop
16=16+1;
i7=i6+1;
i8=i7+1;
end % end i6 loop
i5=i5+1,
16=15+1;
i7=i6t1,
i8=i7+1;
end % end 15 loop
41441,
i5=i4+1,
i6=15+1;
i7=46+1;

93

i8=17+1;
end % end i4 loop
3=i3+1;
i4=i3+];
i5=i4+1;
i6=i5+1;
i7=i6+1;
iB=7+1;
end % end i3 loop
i2=12+1;
3=i2+1;
i4=i3+1;
i5=i4+1;
i6=i5+1;
i7=i6+1;
i8=i7+1;
end % end i2 loop
il=il+];
i2=i141;
3=i2+1;
i4=i3+1;
i5=i4+1;
6=15+1;
i7=96+1;
iB=i7+1;
end % end it loop

record

% Genetic algorithm in search of the optimal n-tuple

% from a gene pool of features.

% This version records the actual feature numbers in the
% matrix 'record, not the index!!

% X3. Set m in initfast.

% set init=1 for automatic initialization

comment="x3, m=5, 15-tuple.’

n=15;

load x3

clear Xselect;

features=[9 11 30 50 39 81 235 358 359 363 449 19729 450 453 457 458 478 ...
111 452 482 361 15 36 37 328 67 79 460] -

% features=[4 589 12 18 1922 29 30 33 36 39 40 50 56 62 76 7981 ...

% 111 114 163 197 235 358 359 361 363 403 449 450 452 453 456 457 ...
% 458 477 478 482 534625]

feature_num=length(features)

for £=1:feature_num
Xsel(£1:100)=x3{features(f),1:100);

end
clear x3;
clear average_fitness;
if injt==]
% initialize population size, crossover rate, mutation rate, etc.
population_size=200;
mutation_rate=0.001;
crossover_rate=0.7;
record=zeros(20,n+3),
indi=0;
% initialize population
rand(uniform"),
population=fix((feature_nurn - .0000001) .* rand(population_size,n)) + 1;
end
% start evolution
for generation=1:100000
generation
% test the population for fitness
for f= L:population_size
Xselect = Xsel(population(f)),);%
initfast; % test each individual
fitness(f) = abs((nn+ww)/2 - 20); % subtract 20 to exaggerate the
% difference in fitness ratio
%if (((n>=T0)&(ww>=70)) | (ftness>=56) | (nn<=20)&(ww<=20)))
if ((Btness(f)>=65) | (n<=20)&(ww<=20)))
indi=indi+]
record(indi,) = [fe (population(f,’)) generation nn ww}.%
{f (population(£,:)) generation nn ww]
end
end

% display average fitness in percentage
age_fitness(g ion)=mean(fitness) + 20

94

% REPRODUCTION !

% reorder the fitness values for easier computation
fit_measure(!)=fitness(1);

for £=2:population_size
fit_measure(fy=fit_measure(f-1y+fitness(f),

end

for £=1:population_size
% randomty pick one individual to copy into the new population
% individuals with higher fitness values are more likely to survive
temp=fit_measure(population_size) .* rand,
index=find(abs(fit_measure-temp) == min(abs(fit_measure-temp)));
if temp <= fit_measure(index(1))
new_population(f;)=population(index(1),),%
else
new_population(f,y=population(index(1}+1,);%
end
end
population=new_population;

% CROSSOVER !!
f=1;
while f <= population_size
if rand <= crossover_rate
mate=f,
crossover = 0;
while (f < population_size) & (crossover==0)
f=f+1,
if rand <= crossover_rate
% actual crossover
crossover = |;
temp=fix((n - 1.00001) .* rand) + 2,%
gene_temp=population(mate,temp:n),%
population(mate,temp:n)=population(ftempmn),%
population(ftemp:n)=gene_temp,
end
end
end
f=f+1;
end

% MUTATION !
% Note: Modified Aug. 19 due to a bug
num_mutation=population_size .* mutation_rate .* n.* (randn + 1);
for f=1:num_mutation
population(fix((population_size-0.000001).*rand+1),fix((1-0.00001)*rand+1))...
= fix((feature_num - 0.000001) * rand + 1),
end

% save record in case of crashing
save crashrec comment record average_fitness

% go to next generation

end

% display record of good individuals in history
comment

record

% [sort(record(1:indi, 1)) record(1:indin+ In+3)]

% SELECTION AND INITIALIZATION OF THE DATA CENTERS
% FOR THE LMS FILTER.

% “initrain_sess” = Polygraph sessions which are used for
% INITialization of the "data_centers” and TRAINing.

% The "initrain” sessions are set in & way that the 1st part
% (before the "border”) represents the non-decptive and the
% 2nd part (after the border) the deceptive sessions.

clear,
84%** To be set for each polydat_i (fx3, fix2, fixt): sescsnnsasssennse
%' L
whichfeatures_3 = {1:30];
nondsessions_3 ={11:50];

%[168912161821 242728323544 48],
depsessions_3 = [51:90];

%[51 53 58 59 63 67 72 75 82 85 8889 93 95 100,

L

%.
whichfeatures_2 =[],
nondsessions_2 ={I;
depsessions_2 =],
%" -
whichfeatures_1 =[],
nondsessions_1 =[];
depsessions_1 = {J;
%* -

95

%* ATTENTION: The DIMENSION of each "whichfeatures_...* is to be equal!

%* (or 2¢r0)

%

if length(whichfeatures_3) ~= length(whichfeatures_2) |
length{whichfeatures_2) ~= length(whichfeatures_1),

SprintfC11 LTI IR,
fprintf’Check "whichfeatures"! They are different big'n),
fpntfThe dimensions are as following:\n);

fprintf\ny,

fpantU 1st 2nd 3rdwn);

disp([length(whichfeatures_1), length(whichfeatures_2), ...
length(whichfeatures_3)])

fprintf(\n),

fprint’YOU DO NOT NEED TO CHANGE THE EMPTY ONESHnY),
fprintfC1F THAT"S THE CASE: PRESS ANY KEY TO CONTINUE.\n),

SorntfC11 R T),
panse;
end,
border = length(nondsessions_3) + length(nondsessions_2) ...
+ length(nondsessions_1),

%%% polydat_3:
if size(nondsessions_3,1)~=0,
Joad c:\users\ramin\fem\multidim\ftx3;

dim = length(whichfeatures_3),

f=1:dim;

Ntemp_X(€;) = x3(whichf _Xf), nondsessions_3);
Dtemp_X(£,:) = x3(whichfe _3(f), depsessions_3);
clear x3;

end;
%%% polydat_2
if size(nondsessions_2,1) ~=0,
Joad c:\users\ramin\fem\multidim\fix2;

dim = length(whichfeatures_2),

f=1:dim;

Ntemp_2(£;) = x2(whichfeatures_2(f), nondsessions_2),
Dtemp_2(£;) = x2(whichf _2(D), depsessions_2);
clear X2,

end,
%%% polydat_1
if size(nondsessions_1,1)~=0,
foad c:\users\ramin\fem\multidim\fx1;

dim = length(whichfeatures_1);

f=1:dim;
Ntemp_I(£;) = xI(whichfe _1(f), nondsessions_1},
Demp_}(L:)= x1(whichfeatures_I(f), dcpsessions_1),
clear x1;

end;

initrain_sess = {Ntemp_3'; Ntemp_2; Ntemp_1"; ...
Dtemp_3'; Dtemp_2', Dtemp_1;

howmany = size(initrain_sess,1);

mesh(mitrain_sess),

% TWO FEATURES AT A TIME - PLOT EXAMPLE:
%plot(nitrain_sess(1:40,1),initrain_sess(1 :40,4).'y)
%shold on

%plotGnitrain_sess(41:80,1),initrain ‘sess(41:80,4),'r)

%, SELECTION AND INITIALIZATION FOR LMS FILTER.

8 The "initrain® data represents Polygraph sessions which are used for
% INTTilization and TRAINing of the "data_centers” and input data.

96

% The "initrain” data are set in @ way that the Ist part - before the
% "(TC_)border" - represents the non-decptive and the second part
% - after the "(TC_)border” - the deceptive sessions.

% The prefix *nond” represents the non_decptive, and "dcp” the deceptive
% elements.

clear,

%

o, =eevssmsx 7O BE SET FOR EACH polydat_i (fx3, fx2, fix1): #=*****
%‘ -
% First for the data_centers: -
%- .
nondsessions_3 = [1:20];

%[168912161821242728323544 48],
depsessions_3 = [51:70];

%[51 53 58 59 63 67 72 75 82 85 88 89 93 95 100};

L

%‘
nondsessions_2 = [J;
depsessions_2 =[],
%. -
nondsessions_1 = [};
depsessions_1 ={];
./.. L]
%. -
%* Now for the input data for which the filter is to be (Trained hd
%" to (C)lassify: hd
%l -
TC_nondsessions_3 = [1:30];
TC_dcpsessions_3 = {51:80]; hd

TC_nondsessions_2 =[],
TC_dcpsessions_2 ={J;
%. -
TC_nondsessions_1=[];
TC_depsessions_1 = [];

%. -
%* .
%* And finally for the selected features:

%" .

whichfeatures_3 = [1:30];
whichfeatures_2 = J;
whichfeatures_1 = {};
%‘ -
%* ATTENTION: The DIMENSION of each "whichfeatures_..." is to be equal! *
%* (or zero) -
%

if length(whichfeatures_3) ~= length(whichfeatures_2)] ...
length(whichfeatures_2) ~= length(whichfeatures_1),

ForintfCH T AR,

fprintf’Check "whichfeatures™! They are different big!\n'),
fprintf’The dimensions are as following'\n’),

fprintf\n);

fprintf’ 1st 2nd 3rd\n’;

disp([length(whichfeatures_I), length(whichfeatures_2), ...
length(whichfeatures_3)})

fprintf(\n),

fprintf’YOU DO NOT NEED TO CHANGE THE EMPTY ONES!\n);
fprintfUIF THAT'S THE CASE: PRESS ANY KEY TO CONTINUE \n);

ﬁJrinti(‘!!!!!!!!!!l!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n');
pause;

end;

border = length(nondsessions_3) + length(nondsessions_2) ...

+ length(nondsessions_1);

TC_border = length(TC_nondsessions_3) + length(TC_nondsessions_2) ...
+ length(TC_nondsessions_1),

%% polydat_3:

dim = length(whichfeatures_3),
if dim ~= 0,

Toad ¢:\users\ramin\fem\multidim\ftx3;
f=1:dim;

if length(TC_nondsessions_3)~=0,
TC_Ntemp_3(f,;) = x3(whichfe _3(f), TC_nondsessions_3),
end;

if length(TC_dcpsessions_3)~=0,
TC_Dtemp_X(f,)) = xXwhichfe X0, TC_depsessions_3),
end,;

97

if length(nondsessions_3) ~= 0,
N!;rnp__fi(f,:)*x:\ hichf _3(f), nondsessions_3),
end,

if length(dcpsessions_3) ~= 0,
Dtemp_X£;) = x3(whichfeatures_3(f), depsessions_3);
end;

clear x3;
end,

%9%% polydat_2

dimn = length(whichfeatures_2);
if dim ~= 0,

load c:\users\ramin\fem\multidim\ftx2;
f=1:dim;

if length(TC_nondsessions_2) ~= 0,
TC_Ntemp_2(£,)) = x2(whichfe _2(f), TC_nondsessions_2),
end;

if length(TC_dcpsessions_2) ~=0,
TC_Dtemp_2(£) = x2(whichfeatures_2(f), TC_dcpsessions_2),
end;

if length(nondsessions_2) ~=0,
Nl:mp_2(£:)=x2\ hichfeatures_2(f), dsessions_2);
end,

if length(dcpsessions_2)~=0,
Dl;mp_2(f.:)=x2\ vhick _2(D), depsessions_2);
end,

clear x2;
end;

%% polydat_1

dim = length(whichfeatures_1);
if dim ~= 0,

load c:\users\ramin\fern\multidim\fix1;
f=1:dim,

if length(TC_nondsessions_1)~=0,
TC_Ntemp_I(f,)) = xI(whichfeatures_1(f), TC_nondsessions_1),
end;

if length(TC_dcpsessions_1)~=0,

TC_Dtemp_I(f;)) = xi(whichfeatures_1(f), TC_dcpsessions_1);
end,

if length(nondsessions_1) ~=0,

Ntemp_I(£;}) = x1(whichfeatures_I(f), nondsessions_1),

end;

if length(dcpsessions_1)~=0,

Dtemp_I(£:) = xI(whichfe _1(f), dopsessions_1);

3

clear x1;
end,

TC_initrain = [TC_Ntemp_3'; TC_Ntemp_2', TC_Ntemp_1, ...
TC_Dtemp_3', TC_Dtemp_2'; TC_Dtemp_1'};

cent_initrain = [Ntemp_3'; Ntemp_2'; Ntemp_1'; ...
Dtemp_3', Dtemp_2'; Dtemp_1];

% LMS FUZZY ADAPTIVE FILTER.

function [new_theta, new_data_centers, new_sigma, output_label] = ...
adaptzzy(theta, data_centers, sigma, input_vect, desire, step)
%{printf{size(theta)-);size(thets),
%{printf(size(sigma).);size(sigma),
% Get the dimensions of matrices and verify their consistency:
[label_no, ft_no) = size(data_centers),
if (llabe!_no, R_no] ~==size(sigma)) | (1, ft_no] ~=size(input_vect)) |...

(label_no, 1] ~= size(theta))

error(matrix dimensions are wrong!)

end,
Sttt

98

% Evaluate Gaussi bershipfunctions:

distances = (ones(label_no,1) * input_vect) - data_centers;

% fprintfsize(di)., size(d)

% To creat compatible dimensions: Fill input_vect down into an
% (label_no x ft_no) matrix, so that it is the same input for all
% (label_no) rules, and then subtract data_centers from it.

a=exp(-0.5.* sum(((distances /sigma) "2 Y),
% Without "sum”: a = Uik i.e. membership values

% etc.etc...(conventional way)

Yottt

Yefprintflsize(a).);size(s),

% Centroidal defuzzification:

b= sum(a); %fprintf{'size(b).);size(b),
output_label = sum(theta .* 8}/ b;
Yo+

% Adaption:

templ = step .* (desire - output_label) .* a /b,
new_theta = theta + temp1;

temp2 = ((temp! .* (theta - output_label)) * ones(l, ft_no)) .* ...
distances / (sigma /2),
new_data_centers = data_centers + temp2,

new_sigma = sigma + temp2 .* distances / sigma,
Yo+

retumn;

% LMS FILTER INTIALIZATION (TRAINING AND TESTING)
% FIRST VERSION

% clear everything!
clear,

%loading ...:
Joad c:\users\ramin\fem\rnultidim\ftx3;

which_features = 1:100,% to change!!!

#, the data from the 'person’ who is to be tested:
person=2,;
testperson = x3(which_features,person)’,

polysession(1,)) = xXwhich_features,1),%nondecp
%%%{x3(81,1), x3(111,1), x3(235,1), x3(450,1), x3(452,D)}

polysession(16,7) = xX(which_features,100)’,%decp

%%%{x3(81,100), x3(111,100), x3(235,100), x3(450,100),...

%6%%x3(452,100)]; % polygraph data for two sessions,
% i.e one truthful & one decpetive

polysession(2,)) = x3(which_features,48)',%nondecp
polysession(3,) = x3(which_features,5),%nondecp
polysession(4,) = xYwhich_features,8)',%nondecp
polysession(s,:) = xXwhich_features,9)’;%nondecp
polysession(6,:) = x¥which_features,12);%nondecp
polysession(7,:) = xXwhich_features,16);%nondecp
polysession(8,:) = x3(which_features, 18),%nondecp
polysession(9,:) = x3(which_features,21);%nondecp
polysession(10,:) = x3(which_features,24y;%nondecp
polysession(11,:) = xXwhich_features,27y;%nondecp
polysession(12,)) = xXwhich_features,28)',%nondecp
polysession(13,:) = x}(which_features,32)';%nondecp
polysession(14,) = x3(which_features,35),%nondecp
polysession(15,’) = x3(which_features,44),%nondecp

polysession(17,) = xXwhich_features 95);%decp
polysession(18,:) = x3(which_features,93)%decp
polysession(19,)) = x3(which_features,89)',%decp
potysession(20,)) = x3(which_features,88)’,%decp
polysession(21,.) = x¥which_features,85);%decp
polysession(22,7) = x3(which_features,82)',%decp
polysession(23,)) = xXwhich_features,75),%decp
polysession(24,:) = x3(which_features,72)’;%decp
polysession(25,) = x3(which_features,67),%decp
polysession(26,:) = x3(which_f 63);%decp
polysession(27,:) = x3(which_features,S9)',%decp
polysession(28,7) = x3(which_features,S8),%decp

99

polysession(29,)) = xXwhich_features,53)’;%decp
polysession(30,:) = x3(which_features,S1);%decp

{howmany, dim] = size(polysession),% "howmany" must be even!
half= howmany/2;

clearx3; %save memory & clear
Yo+t
%initialiation & clear:

step = 0.005,
output = zeros(l, 2)

output_mean = [1, 2]

input_mean = polysession;
input_width = 1 * ones(howmany, dim);

% Testing(see 100 for des)

{dummy, dummy, dummy, output] = ...

adaptzzy(output_rnean, input_mean, input_width, testperson,...

100, step);
% Test how good the output is at
% the beginning.

end,
output

pause;

figure(1):clg
plot(output,");
%plot(output_mean,'.b),
hold on;
vmesh(input_width);

% SEE ABOVE - SECOND VERSION.
%User interface to improve!

% INITIALIZATION:
%% HHHH

step=0.5; % Learning factor

% The prefix "TC" represents the input data for which the filter
% is to be (T)rained to (C)lassify:

TC_howmany = size(TC_initrain, 1,

f{howmany, dim]} = size(cent_initrain), % representing data_centers
clear output,

output = zeros((TC_howmany, 1]);

% "+1" rep the nondeceptive and "-1" the deceptive data:
init_theta_non =+1 * ones(border, 1),

init_theta_dcp = -1 * ones((howmany-border), 1);

output_mean = [init_theta_non, init_theta_dcp]; % ~data_centers

input_mean = cent_initrain;
input_width = 100 * onesthowmany, dim);

S -ttt

% Before any training ...
% Test how good the output is at the beginning:

for k=1.TC_howmany

if k<=TC_border
des=t],

else

des=1;

end

[dummy, dummy, dummy, output(k)] = ...
adaptzzy(output_mean, input_mean, ...
input_width, TC_nitrain(k,’),...

des, step),

clear dummy;

figure(1);clg
plot(output,+,

100

%plot(output_mean,"b’), ’
hold on;

pause,

%%mesh(input_width),

% Starting training: DO A BETTER USERINTERFACE!

for i=1:30
for j=1:5
for k=1.TC_howmany
if k<=TC_border
des=+1;
else
des=-1;
end
{output_mean, input_mean, input_width, output(k)] =
adaptzzy(output_mean, input_mean, input_width, ...
TC_initrain(k,’), des, step),
end,
end,
output,
figure(l);
plot(output,); %axis([1 100 -0.22.1}]);

%plot{output_mean,"b’),
%mesh(input_width),
Yopause,

end,

speeseessnsess SAVING THE FILTER CHARACTERISTICS: eEsRsANEERIRSERRRS

SprintfCH IR A,
fprintf{TF YOU WANT TO SAVE THE CHARACRERISTICS OF THIS FILTER \n);
fprintfTPLEASE TYPE ANY NUMBER(¥) FROM 1-991\n);

fprintfCTHIS FILTER WILL BE THEN SAVED AS "filter#" !\n);

clear numb;,
numb = input(The filter number(#) is:);
% By default: numb={}, i.e. nothing will be saved.

if numb ~={),
numb = int2str(numb,
com ={'save ', filter’, numb, ...
* whichfeatures_3', ...
* whichfeatures_2', ...
* whichfestures_I', ...
! output_mean', * output_mean, ...
'input_mean’, ' input_width];
eval(com);
end;

% CREATING THE ELLIPTICAL CLUSTERS FOR THE VISUAL
% INSPECTIONS - AND ALSO FOR STTING THE RULES.

function [x,y}=ellipse(xcenter,ycenter,xwidth,ywidth)
angle={0:0.02%pi:2*pi};

x=xwidth .* cos(angle) + xcenter,

y=ywidth .* sin(angle) + ycenter,

plot(x.y,-)

% TEMPORARY LMS SETTING - TEST

function output_labelfi pinput_vect)
thete={ 11-1-1J;

data_centers={ -1 -0.5;0-0.25;00;103});
sigma={ 0.50.8,0.50.25;0.10.2;0605};

% Get the dimensions of matrices and verify their consistency:

[label no, ft_no] = size(data_centers),
if (flabel_no, f_no) ~= size(sigma)) | (!, R_no] ~=size(mput_vect)} |...
(flabel_no, 1) ~= size(theta))

eror('matrix dimensions are wrong!)
end,;
Sttt

% Evah G : 1 chinf

distances = (ones(label_no,1) * input_vect) - data_centers;

a=exp(-0.5.* sum(((distances /sigma) ~2)))

101

% Centroidal defuzzification:

b = sum(a);

output_label = sum(theta .* 8) / b;
output_label = output_label " 2;

retumn,

% LMS FILTER TESTING.
% Experimenting with the use of adaptive fuzzy logic
% in polygraph classification.

init=input(Do you want to initialize all parameters? 18",
if init==y’

% Initialize the parameters for fiuzzy LMS algorithm.

% Output of | means nondeceptive

% Output of -1 means deceptive

4 length(output_mean) = # of rules

fprintflinitializing\n’);

output_mean={ 11-1-1T;

% input_mean={ centers of first rule ; centers of second rule ; etc.),
input_mean={ -1-0.5;0-0.1,00;103 IR

% input_width={ widths of first rule ; widths of second rule ; etc.],
input_width=[0.51.3;0.50.25;,0.1 02,0605},

features={451 452}, % Select the features

step=0.005, % Select leaming rate

% Select training data

ndep_3=1:15; % Nondeceptive sessions in x3 for training

dep_3=51:65; % Deceptive sessions in X3 for training

ndep_2={],

dep_24J;

ndep_I={};

dep_1={]; % Note that nondeceptive data in x1, X2, and X3
% are the same, so ndcp_2 and ndcp_1 are really
% redundant.

load x3;

load x2;

Joad x1;

Ntrain={x1(features,ndcp_1) x2(features,ndcp_2) x3(features,ndep_3)[';
Dtrain={x1(features,dcp_1) x2(features,dcp_2) x¥features,dep_3));

% Select testing data

ndep_3={}; % Nondeceptive sessions in x3 for testing

dep_3=66:100,

ndep_2={],

dep_2=[51:100];

ndep_1=16:50;

dep_1={51:100}; %, Note that nondsceptive data in x1, x2, and x3
¢, are the same, so ndcp_2 and ndcp_1 are really
% redundant.

Ntest={x(features,ndcp_1) x2(features,ndcp_2) x¥(features,ndcp_3)]'s
Dtest=xl(features,dcp_l)';

Dtest2=x2(features,dcp_2),

Dtest3=x3(features,dcp_3)’,

clearxl;

clear x2;

clear x3;

clear record;

epoch=0;

end

% Test fuzzy system before any training
% Test training data first
clear Nouyput,
clear Doutput;
[Ntr,dummy}=size(Ntrain), % Ntr= total # of nondeceptive sessions
[Dtr,dummy}=size(Dtrain); % Dir = total # of deceptive sessions
if Ntr ~=Dtr
errorCNumber of nondeceptive and deceptive training data mismatch?);

end

for =}:Ntr
[dummy,dmnmy,dmnmy.Noutput(i)hdapmy(output_mw\,hput,_mw\,...

input_width,Ntrain(i,)),1 step);
[dummy,dmmy,&nnmy,mumu@h&pmy(oumm_mmm_mm...
] input_width, Dtrain,)-1step);
en
% Record results

record(epoch+1,1:2)={Gength(findNoutput>0)YNtr) Gength(find(Doutput<0)yDtr) %
squared_error(epoch+1,1:2)=<{mean((1-Noutput)."2) mean((Doutput+1).~2)};
fprintipercent correct nondeceptive and d ptive detections for training data:\n’),
disp(record(epoch+1,1:2))

% Now test testing data

clear Noutput,

clear Doutput,

[Nte,dummy}=size(Ntest), % Nte = total # of nondeceptive sessions

102

for i=1:Nte

[dummy,dmmny,dummy,Noutput®}=adaptzy(ourput_mean,input_mm..‘

input_width,Ntest(i,)), ! step),
end
[Dte,dummy}=size(Dtest), % Dte =total # of deceptive sessions in x1
for i=1:Dte

[dummy,dummy,dmnmy,Douﬁput(i)hdaptzzy(output_mean,input_manr..

] input_width, Dtest(.),-1.step);

en

squared_error(epoch+1 3:4)={mean((1-Noutput)."2) mean((Doutput+ NAYL
record(epoch+1,3:4)={(length(find(Noutput>0)y/Nte) (length(find(Doutput<0)}Dte)];
{Dte,dummy}=size(Dtest2), % Dte = total # of deceptive sessions in x2

clear Doutput,
for i=1:Dte
{dummy,dummy,dummy,Doutput(i)}=adap tput_mean,input_mean,...
input_width, Dtest2(i,)),-1,5tep);
end

squared_error(epoch+1,5:6)=[mean((1-Noutput)."2) mean((Doutput+1).°2)];
record(epochr+1,5:6)=[(length(find(Noutput>0)y/Nte) (ength(find(Doutput<0)y Dte)];
{Dte,dummy}=size(Dtest3), % Dte= total # of deceptive sessions in x3

clear Doutput,

for i=1:Dte

[dummy,dummy,dummypoutpu@hdapmy(output_man,input__mean,..

4 input_width,Dtest3(,),-1.step);

en

squared_error(epoch+ 1,7:8)={mean((1-Noutput).~2) mean((Doutput+ N,
record(epoch+1,7:8)={(ength(find(Noutput>0)yNte) (length(find(Doutput<0)yDte)},

fprintftraining x1,x2,x3:\n’);
disp(record(epoch+1,))

% Start training and testing
fprintflresults after training\n’)
while epoch<100000
epoch=epoch+1
clear Noutput,
clear Doutput;
% Training
for i=1:Ntr
[output_mun,input_mean,input_widthNoutput(i)]———...
adaptzzy(output_mean,input_mean,input_width, ..
Ntrain(i,),1,5tep);
(output_mean,input_mmn,input_width,Doutput(i)F...
adaptzzy(output_mean,input_mean,input_width,...
Dtrain(i,),-1,5tep);

end
% end one epoch
 Test training data
for i=1:Ntr
[dummy,dummy,dummy,Noutput@]=...
adapmy(output_meanjnput_mean,h\pm_widﬂy.4.
Nitrain(i,),1.step);
{dummy,dummy,dummy,Doutput@)}=...
edaptzzy(output_mean,input_mean,input_width,...
Dtrain(L),-1,step);
end

% Record results of training data at the end of an epoch
squared_error(epoch+1,1 :2)={mean((1-Noutput)."2) mean((Doutput+ 1)
record(epoch+1,1:2)={(ength(find(Noutput>0)YNtr) (length(find(Doutput<0)YDtr) I8

% Now test testing data
clear Noutput,

clear Doutput;
[Nte,dummy}=size(Ntest);,

for =1:Nte

(dmmny,dmmr}y,dmnmy,Nomput(x)}=edaptzzy(outpm_mwx,inpm_mm...

input_widthNtest(i,}),1,step);

end
[Dte,dummy}=size(Dtest),
for i=1:Dte

[dmmy,dmy,dumy,DoutpuKi)hdapmy(oulput_mean,h\put_mm...

input_width, Dtest(i,"),-1,step);
end

squamd_en'or(cpocml}:AHmean((l-Noutpm)."Z) mean((Doutput+1).42)];
record(epoch+1,3:4)={(ength(find(Noutput>0)yNte) (tength(find(Doutput<0))Dte)],
[Dte,dummy}=size(Dtest2), % Dte= total # of deceptive sessions in x2

clear Doutput;

for i=1:Dte

[d dummy,dummy,Doutput(i)}=adap tput_meaninput_mean,...

end input_width,Dtest2(i,}),-1,5tep)
squared_error(epoch+1,5:6)={mean((l Noutput).*2) mean((Doutput+1)."2)];
record(epoch+1,5:6)={(ength(End(Noutput>0)y'Nte) (length(find(Doutput<0)yDte)];
{Dte,dummy}=size(Dtest3); % Dte=total # of deceptive sessions in x3

clear Doutput,

for =1:Dte

[durnmy,dummy,durmmy,Doutput(i)} dap output_mean,input_mean,...

input_width,Dtest3G,’),-1.step);

103

end
squared_etror(epoch+1,7:8)={mean((1-Noutput)."2) mean((Doutput+1).~2)];
recordiepoch+1,7:8)={(fength(find(Noutput>0)VNte) (ength(find(Doutput<0)yDte)};

fprintiraining,x1,x2 x3:\),
disp(record(epoch+1,2))

end % Go to next epoch

% Experimenting with the use of adaptive fuzzy logic
% in polygraph classification.

for tral=1:1

% Initiatize the parameters for fuzzy LMS algorithm.
% Output of 1 means nondeceptive

% Output of -1 means deceptive

% length(output_mean) = # of rules

fprintfinitializing\n’);

output_mean={ 11-1-1];

input_mean={ centers of first rule ; centers of second rule ; etc. 1
input_mean={-1-0.5,0-025,00;103};

% input_width={ widths of first rule ; widths of second rule ; etc. J;
input_width={ 0.508;0.50.25;0.102;0605];

features={45] 452]; %4 Select the features

step=0.005, % Select leaming rate

trainers=10, % Select # of training samples from each category
% Select training data

temp_n=randperm(50),

temp_d=50+randperm(50);
ndep_3={1:5 7:10 12 13 15 16 18:20 22232526 28 29 31 32343537 38 40 41 43 44 46:49];
dep_3={51 54 5760 64 6770 73 76 79 82 85],% Deceptive sessions in X3 for training

ndep_2={];

dep_2={51 53 56 59 62 6568 71 74 78 81 84];

ndep_1={}

dep_1={51 54 5759 62 6563 71 7477 80 83},
% Note that nondeceptive data in x1, X2, and x3
% are the same, so ndcp_2 and ndcp_1 are really
% redundant.

load x3;

load x2;

loadxl;

Nitrair=[x 1 (features,ndcp_I) x2(features,ndcp_2) x3(features,ndep_3)]';

Dtrsin={x 1(ft dep_1) x2(fe dep_2) x3(features dep_3)J;

% Select testing data

ndep_3={6 11 14 1721 24 27 30 33 36 39 42 45 50},

dep_3-{52 53 55 56 58 59 61:63 65 66 68 69 71 72 7475 77 78 80 81 83 84 86:100);
ndep_2={];

dep, 2={52 54 55 57 58 60 61 63 64 66 67 69 70 72 73 75:77 79 80 82 83 85:100];

ndep_I={};

dep_1={52 535556 586061 636466 67697072 737576 T8 7981 82 84:100];
%, Note that nondeceptive data in x1, X2, and X3
#, are the same, so ndcp_2 and ndcp_) are really
% redundant.

Ntest={x1(features,ndcp_1) x2(features,ndcp_2) x3(features,ndep_3)]';
Dtest={x(features,dcp_1) x2(features,dcp_2) x3(features,dep_3)]"
clearx!;

clearx2;

clearx3,

clearrecord;

clear temp_n;

cleartemp_d,;

epoch=0;

% Test fuzzy system before any training
% Test training data first
clear Noutput;
clear Doutput,
[Ntr,dummy)=size(Ntrain), % Nir =total # of nondeceptive sessions
[Dtr,dummy}=size(Dtrein), % Dtr=total # of deceptive sessions
if Ntr~=Dtr
error(Number of nondeceptive and deceptive training data mismatch?),

end

for i=1:Ntr
fdummy,dummy,dummy,N output(i)}=sdaptzzy(output_mean,input_mean,...

input_width,Ntrain(i,:),1,step);
{duxmny,d\nnmy,dmnmy.Dontputﬁ)hdapmy(oumm_,mw\,input_mam,...
‘ input_width,Dtrain,’),-1,step);

en

%% fprintf’Results of training data before training\n’),

%% Noutput

%% Doutput

% Record results

record(epoch+1,1:2)={ (ength(find(Noutput>0)y/Ntr) (length(find(Doutput<0)yDtr) J;,
fprintf{’percent correct nondeceptive and deceptive detections for training data\n’),

104

disp(record{epoch+1,1:2))

% Now test testing data

clear Noutput,

clear Doutput,

[Nte,dummy}=size(Ntest), % Nte = total # of nondeceptive sessions
for i=1:Nte

[dummy,dummy,dummy,Noutput()}=adaptzzy(output_mean,input_mean,...

input_width Ntest(3,)),1step);

end
[Dte,dummy}=size(Dtest), % Dte = total # of deceptive sessions
for i=1:Dte
[dummy,dummy,dummy, Doutput(i)}=edaptzzy(output_mean,input_mean,...
input_width, Dtest(i,)),-1,step);
end
if (Nte ~=0) & (Dte ~= 0)
%% fprintf{Results of testing data before training\n);
%% Noutput
%% Doutput
% Record results
record(epoch+1,3: 4)={(‘lmsﬂ\(ﬁnd(N°UfPu'>°))'Nl=) (length(find(Doutput<0)yDte) };
fprintfpercent correct nondecep tions for testing data’\n),
disp(record(epoch+1,3:4))
end
% Start training and testing
fprintlresults after training\n)
while epoch<50
epoch=epoch+1
clear Noutput,
clear Doutput,
% Training
for =1:Ntr
{output_mean,input_mean,input_width,Noutput()}=...
adaptzzy(output_mean,input_mean,input_width,...
Ntrain(i,?),1,step);
[output_mean,input_meaninput_width,Doutput@®}=...
adaptzzy(output_mean,input_meaninput_width,...
Dtrain(i,"),-1,5tep);
end
% end one epoch
% Test training data
for i=1:Ntr
{dummy,dummy,dummy,Noutput®}=...
adaptzzy(output_mean,input_mean,input_width, ..
Ntrain,), 1,step),
[dummy,dmnmy,dummy,DoutputO}—
sdaptzzy(output_mean,input_mean.input_width,...
Dtrain(i,’),-1,5tep);
end
%% fprintf{'results of training data\n’)
%% Noutput
%% Doutput

% Record results of training data at the end of an epoch

record(epoch+1,1: 2)=[(1m81h(ﬁnd(N0mPut>0))’Nif) (length(find(Doutput<0)yDtr) J;
fprintf’percent comrect nondecep for training data:\n)
disp(record(epoch+1,1:2))

if (Nte ~= 0) & (Dte ~=0)
% Now test testing data
clear Noutput;

¢clear Doutput;

for i=1:Nte

{dummy,dummy,dummy,N i)}adaptzzy(output_mean input_mean, ..

mP\!! w:drh,Ntw(x,) 1,5tep);
end
for i=1:Dte

{dummy,dummy,dummy,Doutput()}-adaptzzy(output_mean,input_mean,..

end input_width, Dtest(i,),-1,step);

%% fprintf{'results of testing data\n’)

%% Noutput

%% Doutput

mord(tpochﬂ,?! 4)=((1=nsﬂl(ﬁnd(Noutput>0))’Nte) (length(find(Doutput<0)yDte) |,
fprintflpercen decep ions for testing data:\n’)
dlsp(tecoxd(epochﬂ,} 4)

end

end % Go to next epoch
maximum(trialy=max(record(;,3y+record(;,4));

temp={find((record(;,3)+record(; 4)=maximum(trial)y 000001,
maxima(tnial, 1:S)=temp(1:5);

maxima(trial,1:5)

maximum/2

end % Go to next trial

maximum=maximum/2

105

EPILOGUE - Motivation, challenges and risks

I was easily fascinated by the idea of a lie-detector at the very first moment I heard about it. I
thought, 'we are not supposed to lie anyway and a lie-detector can help us find and prevent a
major part of the crimes committed in our society. 1 became even more motivated to do this
research by an innovative way of pattern recognition, namely the fuzzy approach.

But very soon, I also began to realize its danger - while juggling with numerical data and being
far from the reality of testing actual human beings and judging them by an.algorithm.

An example: Too 'good’ detection rates!

In my project, I obtained in certain cases up to 97% correct detection rate. That is, indeed, an
impressive number. However, the emphasis lies on "certain cases" - not only in this thesis.

A non-technically oriented user of such a product is tempted to put too much trust into these
kinds of high rates. Even if we have a stable lie-detector with 99%(!) correct detection, this still
means that one out of 100 persons will be judged incorrectly.

In our daily life, we do not have the natural skill to "see” who is deceptive, but some biological
and psychological features that enable us to estimate whether and to what degree someone is
lying. This is exactly what I have exploited in this project. In fact, even the fuzzy approach is
similar to the human way of categorizing someone's deceptiveness in soft terms like "She lies
seldom” or "He is often deceptive”, instead of hard labeling like "She is truthful” or "He is
deceptive”.

After all, 1 am convinced that no lie-detector - even if it could work easily with different
polygraph formats, and is perfect in technical terms - can ever be constructed with such a high
detection rate® that one could judge a person without any witnesses or other additional
inquiries. We may only use a lie-detector as a helpful "objective” tool, but never as an ultimate
decision maker.

My initial goal was to be aware of this responsibilty and not to lose the global perspective while
dealing with technical details. 1 hope I have accomplished this.

1 also hope for an environment where we do not judge people who hurt us, but do forgive them.
In that case, we ourselves are forgiven too, since all of us deserve to be judged, don't we!

Ramin Djamschidi
San Jose, September 1994.

63gee e.g. chapter 4.3. for "Outlier effect" and "Performance limitations”.

106

REFERENCES

[Bezdek1981] Bezdek, James C., Pattern Recognition with Fuzzy Objective Function
Algorithm. Plenum Press, New York and London. '

[Bezdek1986] Bezdek, James C. and Siew, K. Chuah, Generalized K-Nearest Neighbor
Rules, Fuzzy Sets and Systems vol. 18. '

[Bezdek1992] Bezdek, James C. and Pal, Sankar K., Fuzzy Models for Pattern
Recognition, Methods That Search for Structuresin data. IEEE Press, Piscataway, NJ.

[Bezdek1993] Bezdek, James C., A Review of Probabilstic, Fuzzy, and Neural Models for
Pattern Recognition, Journal of Intelligent and Fuzzy Systems, J ohn Wiley & Sons. Inc.

[Dastmalchi1993] Dastmalchi, Mitra, Feature Analysis of the Polygraph. Master's Project,
Dept. of Elect. Engr., San Jose State University, California.

[Duda1973] Duda, Richard O. and Hart, Peter E., Pattern Classification and Scene
Analysis, New York, NY, Wiley.

[Dunn1974) Dunn, J. C., 4 fuzzy relative of the ISODATA process and its use in detecting
compact well separated clusters. J. Cybernetics, vol. 3, no. 3.

[Capps1992] Capps, Michael H. and Ansley, Norman, Numerical Scoring of Polygraph
Charts: What Examiners Really Do, in: Polygraph, 1992, 21, pp. 264-320.

[Choe1992] Choe, Howon and Jordan, Jay B., On the Optimal Choice of Parameters in a
Fuzzy C-means Algorithm. IEEE International Conference on Fuzzy Systems, San Diego,

California.

[Jacobs1993] Jacobs, Eric,Time Domain Features for The Fuzzy Set Classification of the
Polygraph Data. Master's project, Dept. of Elect. Engr., San Jose State University,
California.

[Johnson1991] Johnson, Phillip E., Darwin on Ty rial. InterVarsity Press, Downers Grove.

[Jou1993] Jou, Chi-Cheng, Supervised Learning in Fuzzy Systems: Algorithms and
Computational Capabilities. Second IEEE International Conference on Fuzzy Systems,

San Francisco, California.

[1IScorp1993] Bezdek, James C., Fuzzy Logic Inference Systems. A Five Day Short
Course, Inteligent Inference Systems Corp., San Francisco, California.

107

[Keller1989] Keller, JM., Gray, M.R. and Givens J.A., 4 Fuzzy K Nearest Neighbor
Algorithm. IEEE Trans. on Syst. Man. Cybernetics, vol SMC-15, no. 4.

[Layeghi1993,1] Layeghi, Shahab, Pattern Recognition of the Polygraph Using Fuzzy Set
Theory. Master's project, Dept. of Elect. Engr., San Jose State University, California.

[Layeghi1993,2] Layeghi, Shahab, 4 Comparison of Fuzzy Logic Algorithms for Pattern
Recognition. Dept. of Elect. Engr., San Jose State University, California.

[Layeghi1994] Layeghi, Shahab, Polygraph Classification Project: A Brief Guide. Dept.
of Elect. Engr., San Jose State University, California.

[MathWorks1993] The MathWorks, Inc., The student Edition of MATLAB, Englewood
Cliffs, NJ, Prentice Hall.

[Morris1987] Morris, Henry M., Scientific Creationism. Master Books, El Cajan,
California.

[Olsen1983] Dale E., et. al., Recent developments in polygraph testing: A research review
and evaluation - A technical memorandum. Washington DC, US Government Printing

Office.

[Reid1966] Reid, John E. and Inbau, Fred E., Truth and Deception: The Polygraph ("Lie
Detector") Technique. The Williams & Wilkins Company, Baltimore, Md.

[Ruspini1969] Ruspini, Enrique H., 4 new approach to clustering, Information & Control
systems vol. 15 No.1.

[Wang1993] Wang, L. X., Mendel, J. M., Fuzzy Adaptive Filters, with application to
nonlinear channel equalization. IEEE Trans. on Fuzzy Systems, 1, no. 3.

[Wang1994] Wang, L. X., Adaptive Fuzzy Systems and Control: Design and Stability
Analysis. Englewood Cliffs, NJ, Prentice Hall.

[Widrow1985] Widrow, B. and Stearns, S.D., Adaptive Signal Processing, Englewood
Cliffs, NJ., Prentice Hall.

[Zadeh1965] Zadeh, Lotfi A., Fuzzy sets, Information and Control, vol. 8, pp. 338-332.
[Zadeh1975] Zadeh, Lotfi A., Calculus of fuzzy restrictions, in: L. A. Zadeh, K. S. Fu,
K. Tanaka and M. Shimura, eds., Fuzzy Sets and Their Applications to Cognitive and

Decision Processes. Academic Press, New York, pp. 1-39.

[Zadeh1970] Zadeh, Lotfi A. and Bellman, RE., Decision-making in a fuzzy environment.
Managment Science, 17(4).

108

| [Zimmermann1993] Zimmermann, H.J., Prinzipien, Werkzeuge, Potentiale, in: FUZZY
Technologien. VDI-Verlag, Diisseldorf, Germany.

109

Appendix E: Errors in the “Relevant Only” Data

Fuzzy Pattern Recognition of PolyGraph E 12/19/95

NON-DECEPTIVE DATA

KEY

*standard: CODE.011, 012, 013, 021 022, 023, 031, 032, 033
*#*index: error message in MATLAB reads,

>>process
“Index exceeds matrix dimensions.

>>Error in==>c:\users\ulka\non\extractfm
on line 48==> start = begin(i) + 30 .*timesfirst_channel),

>>Error in==>c:\users\ulka\non\process.m
on line 6=>feature = extractf{z, feature_hst);"

~read3: CODE.0l¢, .02¢, .03¢, .023, 033, 011, .021, .031, .013
confusing as to how to READ3 these files

*#*N/A: discs were unable to be processed

Anextra: CODE.041, .042, 043 processed as t4

NEWS.XLS

NON-DECEPTIVE DATA

ERS |SUB # CODE # OF FILES EXTRA FILES ERRORS
1 1 2 |$SEACOWO standard* none none -
2 1 4 |$SEADSLX standard none none
3 1 6 |[SSEANWKF 13 0.005 none
4 1 8 |$$EAOZDG standard none none
5 1 9 |$SEAQWBSY standard none none
6 1 11 |$SEARKZ6 standard none none
7 1 12 |$$EARJSO standard none none
8 1 13 |$SEA%KRI standard none index** t3 -
9 1 15 [$SEA%H#L standard none none
10 1 18 ($$EB2IYL standard none .none
11 1 22 |$$EC4QN3 standard none none
12 1 26 |$SECTN7X standard none none
13 1 33 [$SECLMTU standard none none
14 1 34 |$SECMA%C standard none none
15 1 35 |3SECM7GX standard none none
16 1 36 [SSECMWB3 standard none none
17 1 40 |$EC#G20 standard none none
18 1 43 |$SECSO0F standard none none
19 1 44 $SED8OSU standard none none
20 1 45 |$SEDSLUI standard none none
21 1 46 |$3EDY9439 9 read3” N/A***
22 1 47 |[$SSEDITCX standard none none
23 1 50 |$$EDBQR2 standard none none
24 1 53 |$SEDCZYZ 12 extra’? none
25 1 59 [SIEDPY4# standard none none
26 1 60 |$$EDQCY9 standard none none
27 1 61 [$$SEDQ28X standard none none
28 1 62 [$$EDQOCF standard none index t1
29 1 65 |$SEDRKGO standard none none
30 1 66 |[SSEDRMU# standard none none
31 2 11a |$SFZIMEU 13 .005, extra index tla

2 11b |$SFZISQ# standard none none

32 2 12 |$SFZIT4L standard none none
33 2 14 [3SFZJ52# standard none index t1
34 2 30 |[$FZZNTY 10 0.005 index t3
35 2 32 |3SFZ#D6J 10 0.005 none
36 2 33 [SFZ#OHX 13 .005, extra div by zero t3
37 2 35 |$3FZ33A& standard none none
38 2 36 |(3SF#BCYY 11 .005,.STR none
39 2 38 |[$FF#HAFJIL 10 0.005 index t2,t3
40 2 41 |$$F#B6SC standard none none
41 2 42 |33F#BEC# standard none none
42 2 45 [$SFENMDX standard none index t1
43 2 47 (SSFENHQT standard none none
44 2 48 |3SF#H&TGC standard none index t3
45 2 51 |SSF#QJTF standard none none
46 2 52 |$$F#SOKR standard none none

Page 1

NEWS.XLS

ERS |SUB # CODE # OF FILES EXTRA FILES ERRORS
47 2 53 |$$F#RRDS standard none none
48 2 54 |$$F#RYFR 12 extra index t3
49 2 55 |[$$F#SALQ 10 0.005 index t3
50 2 56 |SSFSCH#2# standard none none
51 3 2 |$3FSD%YR standard none none
52 3 12 |$SFSI41X 11 .005,.STR none
53 3 25a |$$FSIUYOD 10 0.005 none
3 25b |$3IFSUIX 11 .005, .STR none
54 3 31 [$SFSWNSF standard none none
55 3 43 |33F%51&G 10 .STR index ti1
56 3 46 [S3F%S5SUF standard none none
57 3 49 |[$SF%T7KHO standard none none
58 3 59 |[$SF%JAKSE standard none none

Page 2

DECEPTIVE DATA

KEY

*standard: CODE.011, 012, 013, 021 022, 023,031, 032,033

**index: error message in MATLARB reads,

>>process
"Index exceeds matrix dimensions.

>>Error in==>c:\users\ulka\non\extracttm
on line 48==> start = begin(i) + 30 .*timesfirst_channel,1);

>>Error in==>¢:\users\utka\non\process.m
on line 6==>feature = extractflz, feature_bst),"

@format: files were unable to be read. Emror message in DOS reads:
>format not linked
>abnormal program termination

Anextra: CODE.041, .042, .043 processed as t4

~read3: CODE.Olc, .02c, .03¢, .04¢
confusing as to how to READ3 these files

DECEPTIVE DATA

ERS | SUB# CODE # OF FILES | EXTRAFILES ERRORS

1 1 1a |$$GIMSGD standard* none index** t3a

1 1b $SEACLB6 standard none none

1 1c . |$$G336HN standard none none
2 1 5 $SEAN#XO standard none none
3 1 7 $SEAOQXV standard none none
4 1 10 [$3EAQ%%U standard none none
5 1 14 |$$EB028S standard none none
6 1 16 $SEA%%MX standard none none
7 1 19 [$SEB2WES standard none index t3
8 1 23 $SEC4% GO 11 .005, .STR format@
9 1 24 $SEC77GI standard none none
10 1 25 $$EC760R standard none none
11 1 27 SSECIX9# standard none none
12 1 28 $SECIVBO standard none none
13 1 29 $$ECJIHKO standard none none
14 1 30 $SECJVSI standard none index t1, t2
15 1 31 $SSECIH#ZS standard none index t3
16 1 32 $SECLODC standard none none
17 1 37 $SECXAPG standard none none
18 1 38 $SECYCGO standard none none ‘—1
19 1 41 SSECHIFA standard none index t3
20 1 42 SSECSANC standard none none
21 1 48 SSEDOSN# standard none none
22 1 51 $SEDBSS3 standard none none
23 1 52 $SEDCSRC standard none none
24 1 54 $$EDDBUX standard none none
25 1 55 $$SEDCBSU standard none none
26 1 56 $SEDDHTI standard none none
27 1 58 $$EDP26U 12 extrat* index t1
28 1 63 $SEDQYMF standard none none
29 1 64 $SEDR3XI standard none none
30 1 67 $SEDS3ZL standard none none
31 2 1 $SFZ3Z5S standard none none
32 2 2 $SFZ3IXGH standard none none
33 2 5 $$FZ252G6 standard none none
34 2 6 S$FZ6846 standard none none
35 2 8 SSFZ7B#C standard none none
36 2 9 SSFZ7GP# standard none none
37 2 10 $$FZIMEU 17 extra, .005, read3" index t1
38 2 13 $$FZJ358 10 0.005 none
39 2 17 $$FZLIZR 10 0.005 index t2
40 2 18 $$FZLBY& standard none none
41 2 21 SSFZMQ#C 10 0.005 none
42 2 22 $SFZMWSEH 10 0.005 index t2
43 2 25 $$FZWQQC standard none index t1
44 2 26 SSFZW5ST# standard none none
45 2 27 $SFZYCM& 13 extra, .005 index t3

Page 1

, ERS | SUB# CODE # OF FILES | EXTRAFILES ERRORS
46 2 31 |$IFZZR&C 12 extra index t2
(47 2 44 |$SF#NCAB standard none none
i3 2 46 |SSF#NGH3 10 0.005 none
49 2 49 |SSFH#EAKWF 10 0.005 none
50 2 50 |[$SF#PUDW standard none none
51 3 14 |$SFSIK&O standard none none
52 3 16 $3Fr3RJK6 standard none none
53 3 36 $3F%3C19 standard none none
54 3 40 |$3F%48&CHY 11 .005, .STR none
55 3 41 $3F%4VOU standard none none
56 3 54 |SSF%I45# 11 .005, .8TR index t1
57 3 62 $3F%L350 standard none none
58 3 66 $IF%LXJI& standard none none

Page 2

